Learning a grating discrimination task broadens human spatial frequency tuning

Abstract. The effect of spatial frequency discrimination learning on spatial frequency detection tuning curves, obtained by a summation to threshold paradigm, has been investigated. Three human observers were exposed to a grating discrimination task for longer than two weeks, and their detection thresholds for compound Gabor gratings were measured before and after this time interval. Discrimination thresholds decreased continuously and substantially during the course of learning, while the spatial frequency detection tuning curves show significant broadening in the posttest. Calculating the discrimination resolution of an ensemble of sensory coding units shows that larger bandwidths lead to better spatial frequency discrimination performance if pattern discrimination rests on multidimensional comparison or one-dimensional scaling of the spatial frequency parameter. Further, it is shown that a multiple-mechanism nonlinear pooling model is capable of explaining the results if plasticity of coding unit bandwidth or adaptive weights of the coding unit responses at the stage of response integration is assumed. The alternative sources of plasticity and the consequences of the findings for psychophysical modeling are discussed.