Superlenses to overcome the diffraction limit.

The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical lithography and data storage.

[1]  V. Shalaev Optical negative-index metamaterials , 2007 .

[2]  I. Chuang,et al.  Experimental observations of a left-handed material that obeys Snell's law. , 2003, Physical review letters.

[3]  Yi Xiong,et al.  Two-dimensional imaging by far-field superlens at visible wavelengths. , 2007, Nano letters.

[4]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[5]  Jennifer M. Steele,et al.  Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit , 2006 .

[6]  P. Sheng,et al.  Theory and Simulations , 2003 .

[7]  Ekaterina Shamonina,et al.  Imaging, compression and Poynting vector streamlines for negative permittivity materials , 2001 .

[8]  Steven G. Johnson,et al.  Subwavelength imaging in photonic crystals , 2003 .

[9]  Srinivas Sridhar,et al.  Photonic crystals: Imaging by flat lens using negative refraction , 2003, Nature.

[10]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[11]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[12]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[13]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[14]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[15]  Yang Hao,et al.  Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime , 2006 .

[16]  A. Lagarkov,et al.  Near-perfect imaging in a focusing system based on a left-handed-material plate. , 2004, Physical review letters.

[17]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[18]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[19]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[20]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[21]  A. L. Efros,et al.  Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability , 2004 .

[22]  Claudio G. Parazzoli,et al.  Origin of dissipative losses in negative index of refraction materials , 2003 .

[23]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[24]  V. Podolskiy,et al.  Optimizing the superlens: Manipulating geometry to enhance the resolution , 2005, physics/0509067.

[25]  C. Soukoulis,et al.  Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. , 2003, Physical review letters.

[26]  J. Zi,et al.  Negative birefraction of acoustic waves in a sonic crystal. , 2007, Nature materials.

[27]  Jensen Li,et al.  Double-negative acoustic metamaterial. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  V. Podolskiy,et al.  Near-sighted superlens. , 2004, Optics letters.

[29]  C. Soukoulis,et al.  Insect behaviour: Motion camouflage in dragonflies , 2003, Nature.

[30]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[31]  Xiang Zhang,et al.  Surface resonant states and superlensing in acoustic metamaterials , 2007 .

[32]  Yi Xiong,et al.  Tuning the far-field superlens: from UV to visible. , 2007, Optics express.

[33]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[34]  Shuai Feng,et al.  Negative refraction in photonic crystals , 2008 .

[35]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[36]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[37]  F. García-Vidal,et al.  Collimation of sound assisted by acoustic surface waves , 2007 .

[38]  Gennady Shvets,et al.  Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. , 2004, Physical review letters.

[39]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[40]  Yeshaiahu Fainman,et al.  Wave front evolution of negatively refracted waves in a photonic crystal , 2007 .

[41]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[42]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[43]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[44]  Yi Xiong,et al.  Development of optical hyperlens for imaging below the diffraction limit. , 2007, Optics express.

[45]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[46]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[47]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[48]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[49]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[50]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[51]  M. Stockman,et al.  Imperfect perfect lens. , 2005, Nano letters.

[52]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[53]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[54]  J. Pendry,et al.  Perfect cylindrical lenses. , 2003, Optics express.

[55]  Xiang Zhang,et al.  Regenerating evanescent waves from a silver superlens. , 2003, Optics express.

[56]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[57]  S. Anantha Ramakrishna,et al.  Near-field lenses in two dimensions , 2002 .

[58]  Li Minhua,et al.  Transmission properties of composite metamaterials in free space , 2008, 2008 8th International Symposium on Antennas, Propagation and EM Theory.

[59]  C. Soukoulis,et al.  Negative refraction and left-handed behavior in two-dimensional photonic crystals , 2003 .

[60]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[61]  Steven A Cummer,et al.  Direct measurement of evanescent wave enhancement inside passive metamaterials. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  A. Grigorenko Negative refractive index in artificial metamaterials. , 2006, Optics letters.

[63]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[64]  Zhiyuan Li,et al.  Evaluation of lensing in photonic crystal slabs exhibiting negative refraction , 2003 .

[65]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[66]  P. Sheng,et al.  Focusing of sound in a 3D phononic crystal. , 2004, Physical review letters.

[67]  Nicholas X. Fang,et al.  Rapid growth of evanescent wave by a silver superlens , 2003 .

[68]  Yi Xiong,et al.  Experimental studies of far-field superlens for sub-diffractional optical imaging. , 2007, Optics express.

[69]  Yi Xiong,et al.  Realization of optical superlens imaging below the diffraction limit , 2005 .