Optimal control of a satellite-robot system using direct collocation with non-linear programming

Abstract The non-holonomic behavior of a satellite-robot system is used to develop the system's equations of motion. The resulting non-linear differential equations are transformed into a non-linear programming problem using direct collocation. The link rates of the robot are minimized along optimal reorientations. Optimal solutions to several maneuvers are obtained and the results are interpreted to gain an understanding of the satellite-robot dynamics.

[1]  Hans Bock,et al.  Optimal path planning for satellite mounted robot manipulators , 1993 .

[2]  Darrell K. Root,et al.  Space Robotics: Dynamics and Control , 1996 .

[3]  Mahmut Reyhanoglu,et al.  Planar Reorientation Maneuvers of Space Multibody Systems Using Internal Controls , 1992 .

[4]  E. Dickmanns,et al.  Approximate Solution of Optimal Control Problems Using Third Order Hermite Polynomial Functions , 1974 .

[5]  Zexiang Li,et al.  Optimal Nonholonomic Motion Planning for a Falling Cat , 1993 .

[6]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[7]  Evangelos Papadopoulos,et al.  Nonholonomic Behavior in Free-floating Space Manipulators and its Utilization , 1993 .

[8]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[9]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[10]  D. T. Greenwood Principles of dynamics , 1965 .

[11]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[12]  W. G. Bickley,et al.  Piecewise Cubic Interpolation and Two-Point Boundary Problems , 1968, Comput. J..

[13]  Thomas R. Kane,et al.  Three-dimensional reorientation of a system of interconnected rigid bodies , 1994 .

[14]  Zexiang Li,et al.  Attitude control of space platform/manipulator system using internal motion , 1992 .

[15]  Zexiang Li,et al.  Attitude Control of a Space Platform/Manipulator System Using Internal Motion , 1994, Int. J. Robotics Res..