Chip Formation and Control

[1]  D. Umbrello,et al.  Finite element simulation of machining Inconel 718 alloy including microstructure changes , 2014 .

[2]  Simon S. Park,et al.  Investigation of micro-cutting operations , 2006 .

[3]  Jan C. Aurich,et al.  3D Finite Element Modelling of Segmented Chip Formation , 2006 .

[4]  A. Senthil Kumar,et al.  CNC microturning: an application to miniaturization , 2005 .

[5]  K. C. Ee,et al.  Progressive tool-wear mechanisms and their effects on chip-curl/chip-form in machining with grooved tools: an extended application of the equivalent toolface (ET) model , 2003 .

[6]  N. Fang,et al.  An Analytical Predictive Model and Experimental Validation for Machining with Grooved Tools Incorporating the Effects of Strains, Strain-rates, and Temperatures , 2002 .

[7]  M. C. Shaw,et al.  Mechanics of Saw-Tooth Chip Formation in Metal Cutting , 1999 .

[8]  I. S. Jawahir,et al.  The Effects of Cutting Tool Thermal Conductivity on Tool-Chip Contact Length and Cyclic Chip Formation in Machining with Grooved Tools , 1999 .

[9]  N. Chandrasekaran,et al.  Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach , 1998 .

[10]  W. Grzesik,et al.  An Investigation of the Cutting Process for Chip Breaking Monitoring in Turning of Steels , 1998 .

[11]  Toshiyuki Obikawa,et al.  Application of computational machining method to discontinuous chip formation , 1997 .

[12]  W. Grzesik,et al.  An energy approach to chip-breaking when machining with grooved tool inserts , 1997 .

[13]  K. Maekawa,et al.  Friction and tool wear in nano-scale machining—a molecular dynamics approach , 1995 .

[14]  I. S. Jawahir,et al.  A knowledge-based approach for designing effective grooved chip breakers — 2D and 3D chip flow, chip curl and chip breaking , 1995 .

[15]  J. Hashemi,et al.  Finite element modeling of segmental chip formation in high-speed orthogonal cutting , 1994, Journal of Materials Engineering and Performance.

[16]  Yasuhiro Kumaki,et al.  Mechanics and Energy Dissipation in Nanoscale Cutting , 1993 .

[17]  Hiroaki Tanaka,et al.  Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation , 1993 .

[18]  C. A. van Luttervelt,et al.  Recent Developments in Chip Control Research and Applications , 1993 .

[19]  Hiroaki Tanaka,et al.  An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning , 1991 .

[20]  Toshimichi Moriwaki,et al.  Ultraprecision Metal Cutting — The Past, the Present and the Future , 1991 .

[21]  I. S. Jawahir,et al.  On the Controllability of Chip Breaking Cycles and Modes of Chip Breaking in Metal Machining , 1990 .

[22]  C. A. van Luttervelt,et al.  Characteristic Parameters of Chip Control in Turning Operations with Indexable Inserts and Three-Dimensionally Shaped Chip Formers , 1989 .

[23]  P. Oxley,et al.  Modelling the Catastrophic Shear Type of Chip When Machining Stainless Steel , 1986 .

[24]  R. Komanduri,et al.  On Shear Instability in Machining a Nickel-Iron Base Superalloy , 1986 .

[25]  L. De Chiffre,et al.  What Can We Do About Chip Formation Mechanics , 1985 .

[26]  K. Nakayama Chip control in metal cutting , 1984 .

[27]  Paul K. Wright,et al.  Predicting the Shear Plane Angle in Machining From Workmaterial Strain-Hardening Characteristics , 1982 .

[28]  Mamoru Ido,et al.  A Study of Metal Flow Ahead of Tool Face With Large Negative Rake Angle , 1982 .

[29]  J. G. Horne A new model for initial chip curl in continuous cutting , 1978 .

[30]  E. Usui,et al.  Lee-Shaffer's Type Solution for Oblique Cutting , 1974 .