STRONG STABILITY PRESERVING PROPERTY OF THE DEFERRED CORRECTION TIME DISCRETIZATION

In this paper, we study the strong stability preserving (SSP) property of a class of deferred correction time discretization methods, for solving the method-of-lines schemes approximating hyperbolic partial differential equations.

[1]  Yinhua Xia,et al.  Efficient time discretization for local discontinuous Galerkin methods , 2007 .

[2]  Lee-Ad Gottlieb,et al.  Strong Stability Preserving Properties of Runge–Kutta Time Discretization Methods for Linear Constant Coefficient Operators , 2003, J. Sci. Comput..

[3]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[4]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[5]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[6]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[7]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[8]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[9]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[10]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[11]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[12]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[13]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..