Freight Transportation in Distributed Logistic Chains

[1]  Hani S. Mahmassani,et al.  Day-to-day evolution of network flows under real-time information and reactive signal control , 1997 .

[2]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[3]  D. Bolduc A practical technique to estimate multinomial probit models in transportation , 1999 .

[4]  David Branston,et al.  LINK CAPACITY FUNCTIONS: A REVIEW , 1976 .

[5]  Sang Nguyen,et al.  A Unified Approach to Equilibrium Methods for Traffic Assignment , 1976 .

[6]  A. Papola Some development on the cross-nested logit model , 2004 .

[7]  Giorgio Gallo,et al.  Directed Hypergraphs and Applications , 1993, Discret. Appl. Math..

[8]  Warren B. Powell,et al.  An algorithm for the equilibrium assignment problem with random link times , 1982, Networks.

[9]  Jaume Barceló,et al.  Dynamic traffic assignment: Considerations on some deterministic modelling approaches , 1995, Ann. Oper. Res..

[10]  M. Ben-Akiva,et al.  A THEORETICAL AND EMPIRICAL MODEL OF TRIP CHAINING BEHAVIOR , 1979 .

[11]  Mike Maher,et al.  Algorithms for logit-based stochastic user equilibrium assignment , 1998 .

[12]  Andrea Papola,et al.  Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand , 2001 .

[13]  Chandra R. Bhat,et al.  Comprehensive Econometric Microsimulator for Daily Activity-Travel Patterns , 2004 .

[14]  Giorgio Gallo,et al.  Shortest path algorithms , 1988, Handbook of Optimization in Telecommunications.

[15]  M. J. Smith,et al.  Traffic Equilibrium with Responsive Traffic Control , 1993, Transp. Sci..

[16]  C. Chu A PAIRED COMBINATORIAL LOGIT MODEL FOR TRAVEL DEMAND ANALYSIS , 1989 .

[17]  Michael Patriksson,et al.  An algorithm for the stochastic user equilibrium problem , 1996 .

[18]  F. Koppelman,et al.  The generalized nested logit model , 2001 .

[19]  Michael G. Langdon,et al.  Improved Algorithms for Estimating Choice Probabilities in the Multinomial Probit Model , 1984, Transp. Sci..

[20]  Giuseppe Menga,et al.  Decentralized optimization of distributed supply-chain , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  R E Allsop SOME POSSIBILITIES FOR USING TRAFFIC CONTROL TO INFLUENCE TRIP DISTRIBUTION AND ROUTE CHOICE , 1974 .

[22]  M. Bell STOCHASTIC USER EQUILIBRIUM ASSIGNMENT IN NETWORKS WITH QUEUES , 1995 .

[23]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[24]  Vedat Verter,et al.  Chapter 9 Hazardous Materials Transportation , 2007, Transportation.

[25]  Robert B. Dial,et al.  A PROBABILISTIC MULTIPATH TRAFFIC ASSIGNMENT MODEL WHICH OBVIATES PATH ENUMERATION. IN: THE AUTOMOBILE , 1971 .

[26]  Shlomo Bekhor,et al.  Link-Nested Logit Model of Route Choice: Overcoming Route Overlapping Problem , 1998 .

[27]  T. Friesz,et al.  MEASURING THE BENEFITS DERIVED FROM A TRANSPORTATION INVESTMENT. IN: URBAN TRANSPORT , 1982 .

[28]  Carlos F. Daganzo,et al.  Stochastic network equilibrium with multiple vehicle types and asymmetric , 1983 .

[29]  Larry J. LeBlanc,et al.  CONTINUOUS EQUILIBRIUM NETWORK DESIGN MODELS , 1979 .

[30]  Giulio Erberto Cantarella,et al.  A General Fixed-Point Approach to Multimode Multi-User Equilibrium Assignment with Elastic Demand , 1997, Transp. Sci..

[31]  Antonino Vitetta,et al.  Stochastic assignment to high frequency transit networks: models, algorithms, and applications with different perceived cost distributions , 2001 .

[32]  J. Horowitz,et al.  An Investigation of the Accuracy of the Clark Approximation for the Multinomial Probit Model , 1982 .

[33]  G. Gentile,et al.  A within-day dynamic traffic assignment model for urban road networks , 2005 .

[34]  Warrren B Powell,et al.  The Convergence of Equilibrium Algorithms with Predetermined Step Sizes , 1982 .

[35]  F. Leurent Cost versus time equilibrium over a network , 1993 .

[36]  M G H Bell STOCHASTIC USER EQUILIBRIUM ASSIGNMENT AND ITERATIVE BALANCING. , 1993 .

[37]  S. Dafermos Relaxation Algorithms for the General Asymmetric Traffic Equilibrium Problem , 1982 .

[38]  Robert B. Dial,et al.  Bicriterion Traffic Assignment: Basic Theory and Elementary Algorithms , 1996, Transp. Sci..

[39]  F. Koppelman,et al.  The paired combinatorial logit model: properties, estimation and application , 2000 .

[40]  Gennaro Nicola Bifulco,et al.  A stochastic user equilibrium assignment model for the evaluation of parking policies , 1993 .

[41]  Stella Dafermos,et al.  The general multimodal network equilibrium problem with elastic demand , 1982, Networks.

[42]  Antonio Sforza,et al.  ITERATIVE PROCEDURE FOR EQUILIBRIUM NETWORK TRAFFIC SIGNAL SETTING , 1991 .

[43]  Giuseppe Menga,et al.  An optimisation-oriented model of distributed supply-chain , 2008, Math. Comput. Simul..

[44]  G. F. Newell A simplified theory of kinematic waves in highway traffic, part I: General theory , 1993 .

[45]  P. I. Richards Shock Waves on the Highway , 1956 .

[46]  J. Horowitz The stability of stochastic equilibrium in a two-link transportation network , 1984 .

[47]  J G Wardrop,et al.  CORRESPONDENCE. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[48]  D. Watling Asymmetric problems and stochastic process models of traffic assignment , 1996 .

[49]  Patrick T. Harker,et al.  Predictive intercity freight network models: the state of the art , 1983 .

[50]  M. Ben-Akiva,et al.  Discrete choice models with latent choice sets , 1995 .

[51]  Terry L. Friesz,et al.  A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem , 1993, Oper. Res..

[52]  Clifford Winston,et al.  The demand for freight transportation: models and applications , 1983 .

[53]  Ziona Austrian,et al.  Freight transportation demand: A survey of recent econometric studies , 1989 .

[54]  Stella Dafermos,et al.  An Extended Traffic Assignment Model with Applications to Two-Way Traffic , 1971 .

[55]  Vittorio Astarita,et al.  A CONTINUOUS TIME LINK MODEL FOR DYNAMIC NETWORK LOADING BASED ON TRAVEL TIME FUNCTION , 1996 .

[56]  Hai Yang Heuristic algorithms for the bilevel origin-destination matrix estimation problem , 1995 .

[57]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[58]  M. McNally,et al.  A MODEL OF ACTIVITY PARTICIPATION AND TRAVEL INTERACTIONS BETWEEN HOUSEHOLD HEADS , 1996 .

[59]  W. Isard Interregional and Regional Input-Output Analysis: A Model of a Space-Economy , 1951 .

[60]  P. Hughes,et al.  A PROBIT-BASED STOCHASTIC USER EQUILIBRIUM ASSIGNMENT MODEL , 1997 .

[61]  Stefano Pallottino,et al.  Equilibrium traffic assignment for large scale transit networks , 1988 .

[62]  Shing Chung Josh Wong,et al.  A predictive dynamic traffic assignment model in congested capacity-constrained road networks , 2000 .

[63]  Terry L. Friesz,et al.  Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem , 1989, Oper. Res..

[64]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[65]  Francesco Russo,et al.  Application of a Tour-Based Model to Simulate Freight Distribution in a Large Urbanized Area , 2006 .

[66]  E. Cascetta,et al.  A DAY-TO-DAY AND WITHIN-DAY DYNAMIC STOCHASTIC ASSIGNMENT MODEL , 1991 .

[67]  C. Daganzo Unconstrained Extremal Formulation of Some Transportation Equilibrium Problems , 1982 .

[68]  Joel L. Horowitz,et al.  Identification and diagnosis of specification errors in the multinomial logit model , 1981 .

[69]  Carlos F. Daganzo,et al.  Technical Note - Two Properties of the Nested Logit Model , 1993, Transp. Sci..

[70]  A. Daly,et al.  MODELS USING MIXED STATED-PREFERENCE AND REVEALED-PREFERENCE INFORMATION. , 1991 .

[71]  P J Hughes,et al.  Recent developments in stochastic assignment modelling , 1998 .

[72]  Francesco Russo,et al.  Calibrating aggregate travel demand models with traffic counts: Estimators and statistical performance , 1997 .

[73]  Giulio Erberto Cantarella,et al.  Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory , 1995, Transp. Sci..

[74]  Luis G. Willumsen,et al.  Transport demand model estimation from traffic counts , 1989 .

[75]  Vedat Verter,et al.  A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials , 2012 .

[76]  Hani S. Mahmassani,et al.  System Optimal Time-Dependent Path Assignment and Signal Timing in Traffic Network , 1998 .

[77]  Warren B. Powell,et al.  A COMPARISON OF STOCHASTIC AND DETERMINISTIC TRAFFIC ASSIGNMENT OVER CONGESTED NETWORKS , 1981 .

[78]  Mike Maher,et al.  Stochastic social optimum traffic assignment. , 2005 .

[79]  Maria Nadia Postorino,et al.  Fixed Point Approaches to the Estimation of O/D Matrices Using Traffic Counts on Congested Networks , 2001, Transp. Sci..

[80]  Moshe E. Ben-Akiva,et al.  Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows , 2002, Transp. Sci..

[81]  S. Dafermos The Traffic Assignment Problem for Multiclass-User Transportation Networks , 1972 .

[82]  Larry J. LeBlanc,et al.  AN EFFICIENT APPROACH TO SOLVING THE ROAD NETWORK EQUILIBRIUM TRAFFIC ASSIGNMENT PROBLEM. IN: THE AUTOMOBILE , 1975 .

[83]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[84]  Michael G.H. Bell,et al.  Transportation Network Analysis: Bell/Transportation Network Analysis , 1997 .

[85]  Hai Yang,et al.  Transport bilevel programming problems: recent methodological advances , 2001 .

[86]  M. Gallo,et al.  Optimisation models for the urban parking pricing problem , 2006 .

[87]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[88]  Sang Nguyen,et al.  Discrete time dynamic estimation model for passenger origin/destination matrices on transit networks , 1988 .

[89]  Bruce N Janson,et al.  Dynamic traffic assignment for urban road networks , 1991 .

[90]  Pitu Mirchandani,et al.  Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions , 1987, Transp. Sci..

[91]  M. Bell THE ESTIMATION OF ORIGIN-DESTINATION MATRICES BY CONSTRAINED GENERALISED LEAST SQUARES , 1991 .

[92]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[93]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[94]  Gary A. Davis,et al.  Exact local solution of the continuous network design problem via stochastic user equilibrium assignment , 1994 .

[95]  A Gunn,et al.  THE PRIMARY DESTINATION TOUR APPROACH TO MODELLING TRIP CHAINS --TRANSPORTATION PLANNING METHODS. PROCEEDINGS OF SEMINAR M HELD AT THE PTRC SUMMER ANNUAL MEETING, SUSSEX UNIVERSITY, ENGLAND, JULY 14-17, 1986. VOLUME P282 , 1986 .

[96]  Malachy Carey,et al.  Behaviour of a whole-link travel time model used in dynamic traffic assignment , 2002 .

[97]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .