Test of independence and randomness based on the empirical copula process

Deheuvels (1981a) described a decomposition of the empirical copula process into a finite number of asymptotically mutually independent sub-processes whose joint limiting distribution is tractable under the hypothesis that a multivariate distribution is equal to the product of its margins. It is proved here that this result can be extended to the serial case and that the limiting processes have the same joint distribution as in the non-serial setting. As a consequences, linear rank statistics have the same asymptotic distribution in both contexts. It is also shown how these facts can be exploited to construct simple statistics for detecting dependence graphically and testing it formally. Simulation are used to explore the finite-sample behavior of these statistics, which are found to be powerful against varions types of alternatives.

[1]  F. Yates,et al.  Statistical methods for research workers. 5th edition , 1935 .

[2]  John W. Tukey,et al.  Statistical Methods for Research Workers , 1930, Nature.

[3]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[4]  Ramon C. Littell,et al.  Asymptotic Optimality of Fisher's Method of Combining Independent Tests , 1971 .

[5]  Frank L. Spitzer,et al.  Introduction Aux Processus De Markov A Parametre Dans Zν , 1974 .

[6]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[7]  Paul Deheuvels,et al.  Non parametric tests of independence , 1980 .

[8]  Paul Deheuvels,et al.  An asymptotic decomposition for multivariate distribution-free tests of independence , 1981 .

[9]  Marc Hallin,et al.  Linear serial rank tests for randomness against ARMA alternatives , 1984 .

[10]  Winfried Stute,et al.  The Oscillation Behavior of Empirical Processes: The Multivariate Case , 1984 .

[11]  Eric R. Ziegel,et al.  Counterexamples in Probability and Statistics , 1986 .

[12]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[13]  M. Puri,et al.  Linear and quadratic serial rank tests for randomness against serial dependence , 1987 .

[14]  Marc Hallin,et al.  Rank tests for time series analysis a survey , 1992 .

[15]  S. Chatterjee,et al.  Chaos, Fractals and Statistics , 1992 .

[16]  Hans J. Skaug,et al.  A nonparametric test of serial independence based on the empirical distribution function , 1993 .

[17]  Lixing Zhu,et al.  Some blum-kiefer-rosenblatt type tests for the joint independence of variables , 1996 .

[18]  T. Louis,et al.  Tests of independence for bivariate survival data. , 1996, Biometrics.

[19]  Miguel A. Delgado TESTING SERIAL INDEPENDENCE USING THE SAMPLE DISTRIBUTION FUNCTION , 1996 .

[20]  D. Tj⊘stheim Measures of Dependence and Tests of Independence , 1996 .

[21]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[22]  M. Hallin,et al.  Optimal Testing for Semi-Parametric AR Models : From Gaussian Lagrange Multipliers to Autoregression Raul Scores and Adaptive Tests , 1997 .

[23]  R. Randles,et al.  A Nonparametric Test of Independence between Two Vectors , 1997 .

[24]  B. Rémillard,et al.  Emprical Processes Based on Pseudo-Observations , 1998 .

[25]  R. Lockhart,et al.  Tests of Independence in Time Series , 1998 .

[26]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[27]  Yongmiao Hong Testing for pairwise serial independence via the empirical distribution function , 1998 .

[28]  T. Ledwina,et al.  Data-Driven Rank Tests for Independence , 1999 .

[29]  Yongmiao Hong,et al.  Generalized spectral tests for serial dependence , 2000 .

[30]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[31]  T. Ferguson,et al.  Kendall's tau for serial dependence , 2000 .

[32]  S. Kotz,et al.  Correlation and dependence , 2001 .

[33]  B. Rémillard,et al.  A Nonparametric Test of Serial Independence for Time Series and Residuals , 2001 .

[34]  C. Genest,et al.  Tests of serial independence based on Kendall's process , 2002 .

[35]  Kilani Ghoudi,et al.  Empirical Processes Based on Pseudo-observations 11: The Multivariate Case , 2004 .

[36]  R. Fisher Statistical methods for research workers , 1927, Protoplasma.