Accurate solutions and stability criterion for periodic oscillations in hysteretic systems

SommarioNello studio della risposta periodica degli oscillatori isteretici si incontrano difficoltà dovute alla natura non olonoma del legame costitutivo. Nel presente lavoro queste difficoltà vengono superate in parte adottando una formulazione incrementale che riconduce il caso isteretico a quello elastico non lineare seppure al prezzo di un allargamento dello spazio delle variabili di stato. Le soluzioni periodiche sono determinate seguendo il metodo del bilancio armonico con molte componenti; la stabilità viene analizzata con la teoria di Floquet. Le equazioni sviluppate sono utilizzate per determinare le curve di risposta in frequenza sotto una forzante sinusoidale, di un oscillatore che, benchè semplice, presenta una notevole varietà di comportamento. I risultati ottenuti mostrano chiaramente le lacune dei metodi tradizionali; l'influenza delle armoniche superiori in molti casi è ben lungi dall'essere trascurabile.SummaryThe study of the periodic response of hysteretic oscillators is reduced to that of nonlinear elastic oscillators by assuming an incremental formulation for the constitutive relationship. The harmonic balance method with many components allows for accurate periodic solution computation. The Floquet theory can be used to check stability. Developed equations are applied to the study of frequency response curves of a hysteretic oscillator that, although simple, shows both degrading and non degrading behaviour. The results reported clearly show the shortcomings of traditional methods; the influence of higher harmonics is far from negligible.

[1]  F. H. Ling,et al.  Fast galerkin method and its application to determine periodic solutions of non-linear oscillators , 1987 .

[2]  Allen Reiter,et al.  Numerical computation of nonlinear forced oscillations by Galerkin's procedure , 1966 .

[3]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[4]  F. Badrakhan Dynamic analysis of yielding and hysteretic systems by polynomial approximation , 1988 .

[5]  D. Capecchi,et al.  Periodic response of a class of hysteretic oscillators , 1990 .

[6]  Raymond J. Krizek,et al.  Hysteretic Endochronic Theory for Sand , 1983 .

[7]  Thomas K. Caughey,et al.  Sinusoidal Excitation of a System With Bilinear Hysteresis , 1960 .

[8]  Atsuo Sueoka,et al.  On a Method of Higher Approximation and Determination of Stability Criterion for Steady Oscillations in Nonlinear Systems , 1986 .

[9]  D. Capecchi,et al.  Steady‐State Dynamic Analysis of Hysteretic Systems , 1985 .

[10]  R. Van Dooren,et al.  On the transition from regular to chaotic behaviour in the Duffing oscillator , 1988 .

[11]  W. Iwan The Steady-State Response of the Double Bilinear Hysteretic Model , 1965 .

[12]  Kurt Wiesenfeld,et al.  Suppression of period doubling in symmetric systems , 1984 .

[13]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[14]  Gregory R. Miller,et al.  Periodic Response of Elastic‐Perfectly Plastic SDOF Oscillator , 1988 .

[15]  Chihiro Hayashi,et al.  The influence of hysteresis on nonlinear resonance , 1966 .

[16]  S. F. Masri,et al.  Forced vibration of the damped bilinear hysteretic oscillator , 1975 .

[17]  R. Ibrahim Book Reviews : Nonlinear Oscillations: A.H. Nayfeh and D.T. Mook John Wiley & Sons, New York, New York 1979, $38.50 , 1981 .

[18]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[19]  P. C. Jennings Periodic Response of a General Yielding Structure , 1964 .