Durability performance evaluation of green geopolymer concrete

The present manuscript is a state-of-the-art review, which examines the most recent stages in the developments of the class of eco-efficient green geopolymer concrete technology in the light of its...

[1]  Vít Smilauer,et al.  Material and structural characterization of alkali activated low-calcium brown coal fly ash. , 2009, Journal of hazardous materials.

[2]  Pacheco-Torgal Fernando,et al.  Durability and Environmental Performance of Alkali-Activated Tungsten Mine Waste Mud Mortars , 2010 .

[3]  J. Deventer,et al.  Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure , 2013 .

[4]  Rafat Siddique,et al.  Sulfuric acid resistance of fly ash based geopolymer concrete , 2017 .

[5]  B. Vijaya Rangan,et al.  ON THE DEVELOPMENT OF FLY ASH-BASED GEOPOLYMER CONCRETE , 2004 .

[6]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[7]  A. Nemec,et al.  Preparation of geopolymer from fluidized bed combustion bottom ash , 2008 .

[8]  M. Najimi,et al.  Alkali-Activated Natural Pozzolan/Slag Mortars: A Parametric Study , 2018 .

[9]  C. Chen,et al.  Behavior of GFRP retrofitted reinforced concrete slabs subjected to conventional explosive blast , 2017 .

[10]  Nataša Marjanović,et al.  External sulfate attack on alkali-activated slag , 2013 .

[11]  Arnaud Castel,et al.  Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete , 2016 .

[12]  Abdulkadir Cevik,et al.  Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete , 2018, Ceramics International.

[13]  M. Maslehuddin,et al.  Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFA-EACC) mortar in sulfate environment , 2017 .

[14]  Mingkai Zhou,et al.  Magnesia modification of alkali-activated slag fly ash cement , 2011 .

[15]  Xiaomin Zhu,et al.  Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives , 2009 .

[16]  Keun-Hyeok Yang,et al.  Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar , 2014 .

[17]  L. Soriano,et al.  Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag , 2015 .

[18]  Bryan Magee,et al.  Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete , 2016 .

[19]  Ran Huang,et al.  Binding mechanism and properties of alkali-activated fly ash/slag mortars , 2013 .

[20]  F. Pacheco-Torgal,et al.  Tungsten mine waste geopolymeric binder: Preliminary hydration products investigations , 2009 .

[21]  S. Srinivasan,et al.  INFLUENCE OF ACTIVATED FLY ASH ON CORROSION-RESISTANCE AND STRENGTH OF CONCRETE , 2003 .

[22]  H. Khater Studying the effect of thermal and acid exposure on alkali-activated slag geopolymer , 2014 .

[23]  Erich D. Rodríguez,et al.  Effect of binder content on the performance of alkali-activated slag concretes , 2011 .

[24]  J. Sanjayan,et al.  Durability performance of concrete structures built with low carbon construction materials , 2016 .

[25]  John L. Provis,et al.  Drying-induced changes in the structure of alkali-activated pastes , 2013, Journal of Materials Science.

[26]  Md. Rezaul Karim,et al.  On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement , 2014, Materials.

[27]  María Teresa Blanco-Varela,et al.  Chemical stability of cementitious materials based on metakaolin , 1999 .

[28]  H. Brouwers,et al.  Determination of the chloride diffusion coefficient in blended cement mortars , 2015 .

[29]  Mohd Mustafa Al Bakri Abdullah,et al.  Alteration in the Microstructure of Fly Ash Geopolymers upon Exposure to Elevated Temperatures , 2013 .

[30]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[31]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[32]  J.H.M. Visser,et al.  Influence of the carbon dioxide concentration on the resistance to carbonation of concrete , 2014 .

[33]  Ruby Abraham,et al.  Durability characteristics of steel fibre reinforced geopolymer concrete , 2015 .

[34]  Sanjay Kumar,et al.  Mechanical properties and durability of volcanic ash based geopolymer mortars , 2016 .

[35]  Dibyendu Adak,et al.  Effect of nano-silica on strength and durability of fly ash based geopolymer mortar , 2014 .

[36]  C. Andrade,et al.  Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities , 2013 .

[37]  Chunhua Shen,et al.  An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure , 2015 .

[38]  Alexander Steffens,et al.  Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .

[39]  J. Plank,et al.  Influence of water vapour and carbon dioxide on free lime during storage at 80 °C, studied by Raman spectroscopy. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[40]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to acid attack , 2003 .

[41]  Abd Elmoaty M. Abd Elmoaty,et al.  Magnesium sulfate resistance of geopolymer mortar , 2018, Construction and Building Materials.

[42]  Moruf Olalekan Yusuf,et al.  Performance of slag blended alkaline activated palm oil fuel ash mortar in sulfate environments , 2015 .

[43]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[44]  P. Rangaraju,et al.  A comparative study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution , 2017 .

[45]  Hamid Nikraz,et al.  Strength and water penetrability of fly ash geopolymer concrete , 2011 .

[46]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[47]  K. Behfarnia,et al.  The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete , 2018, Construction and Building Materials.

[48]  R. M. Gutiérrez,et al.  Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack , 2016 .

[49]  J. Temuujin,et al.  Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. , 2009, Journal of hazardous materials.

[50]  Chiara Giosuè,et al.  Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class , 2016 .

[51]  W. Yeih,et al.  Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes , 2005 .

[52]  Fernando Pacheco-Torgal,et al.  Investigations on mix design of tungsten mine waste geopolymeric binder , 2008 .

[53]  Saeed Ahmari,et al.  Durability and leaching behavior of mine tailings-based geopolymer bricks , 2013 .

[54]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[55]  Ángel Palomo,et al.  Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products , 2005 .

[56]  M. C. Narasimhan,et al.  Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate , 2016 .

[57]  Mohammad Ismail,et al.  Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars , 2018, Construction and Building Materials.

[58]  K. Behfarnia,et al.  Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete , 2017 .

[59]  Wei Zhou,et al.  Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack , 2016 .

[60]  Wellington Longuini Repette,et al.  Drying and autogenous shrinkage of pastes and mortars with activated slag cement , 2008 .

[61]  Arnaud Castel,et al.  Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years , 2016 .

[62]  A. Karthik,et al.  Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives , 2017 .

[63]  Erdogan Ozbay,et al.  Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity , 2016 .

[64]  O. Kayali,et al.  The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag , 2012 .

[65]  Huajun Zhu,et al.  Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars , 2014 .

[66]  Ángel Palomo,et al.  Alkali–aggregate reaction in activated fly ash systems , 2007 .

[67]  Keun-Hyeok Yang,et al.  Tests on Alkali-Activated Slag Foamed Concrete with Various Water-Binder Ratios and Substitution Levels of Fly Ash , 2013 .

[68]  Arnaud Castel,et al.  Chloride diffusivity, chloride threshold, and corrosion initiation in reinforced alkali-activated mortars: Role of calcium, alkali, and silicate content , 2018, Cement and Concrete Research.

[69]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[70]  Fernando Pacheco-Torgal,et al.  Properties of tungsten mine waste geopolymeric binder , 2008 .

[71]  Susan A. Bernal,et al.  Performance of an alkali-activated slag concrete reinforced with steel fibers , 2010 .

[72]  S. Luhar,et al.  A Review Paper on Self Healing Concrete , 2015 .

[73]  Ángel Palomo,et al.  Corrosion resistance in activated fly ash mortars , 2005 .

[74]  Faiz Shaikh Effects of alkali solutions on corrosion durability of geopolymer concrete , 2014 .

[75]  Ta-Wui Cheng,et al.  Valorisation of glass waste for development of Geopolymer composites – Mechanical properties and rheological characteristics: A review , 2019, Construction and Building Materials.

[76]  V. Saraswathy,et al.  Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar , 2014, TheScientificWorldJournal.

[77]  B. Rangan,et al.  Heat-cured, low-calcium, fly ash-based geopolymer concrete , 2006 .

[78]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[79]  J. Davidovits,et al.  Geopolymeric concretes For Environmental Protection , 1990 .

[80]  Erez N. Allouche,et al.  Examination of Chloride-Induced Corrosion in Reinforced Geopolymer Concretes , 2013 .

[81]  S. Chaudhary,et al.  Thermal resistance of fly ash based rubberized geopolymer concrete , 2018, Journal of Building Engineering.

[82]  Faiz Uddin Ahmed Shaikh,et al.  Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates , 2016 .

[83]  J. Sanjayan,et al.  Microcracking and strength development of alkali activated slag concrete , 2001 .

[84]  P. Chindaprasirt,et al.  Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive , 2018 .

[85]  P. Chindaprasirt,et al.  Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete , 2010 .

[86]  T. Cheng,et al.  Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review , 2019, Composites Part B: Engineering.

[87]  Silvio Delvasto,et al.  Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y al agua de mar , 2002 .

[88]  F. Pacheco-Torgal,et al.  Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders , 2010 .

[89]  Jay G. Sanjayan,et al.  Sulfate attack on alkali-activated slag concrete , 2002 .

[90]  J. Deventer,et al.  Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash , 2014 .

[91]  Ta-Wui Cheng,et al.  Valorisation of glass wastes for the development of geopolymer composites – Durability, thermal and microstructural properties: A review , 2019, Construction and Building Materials.

[92]  Kiyoshi Okada,et al.  Water retention properties of porous geopolymers for use in cooling applications , 2009 .

[93]  Robert M. Brooks,et al.  Properties of alkali-activated fly ash: high performance to lightweight , 2010 .

[94]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to alkali–aggregate reaction , 2001 .

[95]  Stefania Manzi,et al.  Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization , 2016 .

[96]  H. Atahan,et al.  Use of mineral admixtures for enhanced resistance against sulfate attack , 2011 .

[97]  John L. Provis,et al.  Natural carbonation of aged alkali-activated slag concretes , 2014 .

[98]  Liangcai Cai,et al.  Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete , 2011 .

[99]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[100]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[101]  Erez N. Allouche,et al.  Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes , 2014 .

[102]  M. Chi Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete , 2012 .

[103]  R. M. Gutiérrez,et al.  Steel corrosion behaviour in carbonated alkali-activated slag concrete , 2009 .

[104]  P. Chindaprasirt,et al.  Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste , 2018, Construction and Building Materials.

[105]  Rafat Siddique,et al.  Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties , 2018, Journal of Cleaner Production.

[106]  Majid Rostami,et al.  An assessment on parameters affecting the carbonation of alkali-activated slag concrete , 2017 .

[107]  Deepak Ravikumar,et al.  Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders , 2014, International Journal of Concrete Structures and Materials.

[108]  R. Thomas,et al.  Comparison of chloride permeability methods for Alkali-Activated concrete , 2018 .

[109]  Deepak Ravikumar,et al.  Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure , 2013 .

[110]  S. Al-Otaibi,et al.  Durability of concrete incorporating GGBS activated by water-glass , 2008 .

[111]  Zhenguo Shi,et al.  Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars , 2018, Cement and Concrete Research.

[112]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[113]  R. D. Gomez,et al.  Corrosion of reinforcing bars embedded in alkali-activated slag concrete subjected to chloride attack , 2011 .

[114]  Phillip Visintin,et al.  Durability evaluation of geopolymer and conventional concretes , 2017 .

[115]  John L. Provis,et al.  Pore solution composition and alkali diffusion in inorganic polymer cement , 2010 .

[116]  A. Fernández-Jiménez,et al.  A study on the passive state stability of steel embedded in activated fly ash mortars , 2008 .

[117]  Pathmanathan Rajeev,et al.  Durability of low‑calcium fly ash based geopolymer concrete culvert in a saline environment , 2017 .

[118]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[119]  S. Kabir,et al.  Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete , 2017 .

[120]  Marta Castellote,et al.  Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations , 2009 .

[121]  A. Rashad PROPERTIES OF ALKALI-ACTIVATED FLY ASH CONCRETE BLENDED WITH SLAG , 2013 .

[122]  Ran Huang,et al.  Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag , 2015 .

[123]  Ahmad Shayan,et al.  Chloride ingress and steel corrosion in geopolymer concrete based on long term tests , 2017 .

[124]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions , 2015 .

[125]  G. Corder,et al.  Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement , 2011 .

[126]  Jiang-Jhy Chang,et al.  Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar , 2012 .

[127]  Q Ma,et al.  Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes , 2016 .

[128]  Francisca Puertas,et al.  Hormigón alternativo basado en escorias activadas alcalinamente , 2008 .

[129]  Her-Yung Wang,et al.  Study on engineering properties of alkali-activated ladle furnace slag geopolymer , 2016 .

[130]  John L. Provis,et al.  Microstructure and durability of alkali-activated materials as key parameters for standardization , 2015 .

[131]  Feng Xing,et al.  Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms , 2015 .

[132]  Hao Xu,et al.  Resistance of geopolymer mortar to acid and chloride attacks , 2017 .

[133]  H. Lee,et al.  Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste , 2016 .

[134]  David W. Law,et al.  Durability assessment of alkali activated slag (AAS) concrete , 2012 .

[135]  Chunjie Yan,et al.  Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack , 2017 .

[136]  Mo Zhang,et al.  Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water , 2016 .

[137]  G. Long,et al.  Influence of subsequent curing on water sorptivity and pore structure of steam-cured concrete , 2012 .

[138]  H. El-Didamony,et al.  Properties and durability of alkali-activated slag pastes immersed in sea water , 2012 .

[139]  Bhupinder Singh,et al.  Geopolymer concrete: A review of some recent developments , 2015 .

[140]  Warren E. McPherson,et al.  The Challenges of Design and Constructibility , 2012 .

[141]  F. Puertas,et al.  Alkali-aggregate behaviour of alkali-activated slag mortars: Effect of aggregate type , 2009 .

[142]  Della M. Roy,et al.  Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties , 2000 .

[143]  Sun Wei,et al.  Fly ash based geopolymer concrete , 2006 .

[144]  Frank Winnefeld,et al.  Hydration of alkali-activated slag: comparison with ordinary Portland cement , 2006 .

[145]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[146]  Barbara Lothenbach,et al.  Impact of chloride on the mineralogy of hydrated portland cement systems , 2010 .

[147]  John L. Provis,et al.  Distinctive microstructural features of aged sodium silicate-activated slag concretes , 2014 .

[148]  Sandeep Chaudhary,et al.  Development of rubberized geopolymer concrete: Strength and durability studies , 2019, Construction and Building Materials.

[149]  Tao Yang,et al.  Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials , 2018, Construction and Building Materials.

[150]  S. Luhar,et al.  Influence of Steel Crystal Powder on Performance of Recycled Aggregate Concrete , 2018, IOP Conference Series: Materials Science and Engineering.

[151]  H. Park,et al.  Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products , 2015 .

[152]  Paulo H. R. Borges,et al.  The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars , 2017 .

[153]  P. Chindaprasirt,et al.  Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack , 2012 .

[154]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[155]  Ali Allahverdi,et al.  Efflorescence control in geopolymer binders based on natural pozzolan , 2012 .

[156]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[157]  Martin Cyr,et al.  Carbonation in the pore solution of metakaolin-based geopolymer , 2016 .

[158]  Stefania Manzi,et al.  A study on the corrosion of reinforcing bars in alkali-activated fly ash mortars under wet and dry exposures to chloride solutions , 2016 .

[159]  Tarja Häkkinen,et al.  THE INFLUENCE OF SLAG CONTENT ON THE MICROSTRUCTURE, PERMEABILITY AND MECHANICAL PROPERTIES OF CONCRETE. PART 1: MICROSTRUCTURAL STUDIES AND BASIC MECHANICAL PROPERTIES , 1993 .

[160]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[161]  Her-Yung Wang,et al.  A study of the engineering properties of alkali-activated waste glass material (AAWGM) , 2016 .

[162]  Dongke Zhang,et al.  The effect of sodium silicate and sodium hydroxide on the strength of aggregates made from coal fly ash using the geopolymerisation method , 2012 .

[163]  Frank Collins,et al.  Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete , 2000 .

[164]  Hubert Rahier,et al.  Durability of alkali activated cement produced from kaolinitic clay , 2015 .

[165]  Adam Neville,et al.  Chloride attack of reinforced concrete: an overview , 1995 .

[166]  Sujeeva Setunge,et al.  Long term permeation properties of different fly ash geopolymer concretes , 2016 .

[167]  C. Oguchi,et al.  Resistance of plain and blended cement mortars exposed to severe sulfate attacks , 2011 .

[168]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review. Part 2. About materials and binders manufacture , 2008 .

[169]  Mohamed Heikal,et al.  Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag , 2014 .

[170]  K. Mermerdaş,et al.  Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar , 2017 .

[171]  John L. Provis,et al.  Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes , 2013 .

[172]  Her-Yung Wang,et al.  The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration , 2015 .

[173]  Kiachehr Behfarnia,et al.  The effect of silica fume on durability of alkali activated slag concrete , 2017 .

[174]  Marios Soutsos,et al.  Sulfate and acid resistance of lithomarge-based geopolymer mortars , 2018 .

[175]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .

[176]  Amnon Katz,et al.  Minimum cement content requirements: a must or a myth? , 2009 .

[177]  Julia A. Stegemann,et al.  Acid corrosion resistance of different cementing materials , 2000 .

[178]  L. De Ceukelaire,et al.  ACCELERATED CARBONATION OF A BLAST-FURNACE CEMENT CONCRETE , 1993 .

[179]  John L. Provis,et al.  Technical and commercial progress in the adoption of geopolymer cement , 2012 .

[180]  Hjh Jos Brouwers,et al.  The hydration of slag, part 1: reaction models for alkali-activated slag , 2007 .

[181]  Alaa M. Rashad,et al.  The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load , 2011 .

[182]  Jay G. Sanjayan,et al.  Unsaturated capillary flow within alkali activated slag concrete , 2008 .

[183]  Fernando Pacheco-Torgal,et al.  Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment , 2008 .

[184]  Susan A. Bernal,et al.  Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials , 2015 .

[185]  Jian Yu,et al.  Properties and microstructure of the hardened alkali-activated red mud–slag cementitious material , 2003 .

[186]  I. Topcu,et al.  Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement , 2014 .

[187]  Hjh Jos Brouwers,et al.  Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model , 2016 .

[188]  K. Parthiban,et al.  Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete , 2017 .

[189]  N. Neithalath,et al.  An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes , 2013 .

[190]  G. Ye,et al.  The pore structure and permeability of alkali activated fly ash , 2013 .

[191]  Francisca Puertas,et al.  The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate , 2002 .

[192]  M. Maras,et al.  Sulfate resistance of ferrochrome slag based geopolymer concrete , 2016 .

[193]  Cyril J. Lynsdale,et al.  Sulfate Resistance of Alkali Activated Pozzolans , 2015 .

[194]  J. Sykes,et al.  Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid , 2000 .

[195]  R. Siddique,et al.  Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers , 2017 .

[196]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[197]  Ali Akbar Ramezanianpour,et al.  Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume , 2018 .

[198]  P. Deb,et al.  Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica , 2016 .

[199]  F. Puertas,et al.  Effect of Carbonation on Alkali‐Activated Slag Paste , 2006 .