John von Neumann Institute for Computing Efficient Methods for Long Range Interactions in Periodic Geometries Plus One Application

c © 2004 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.

[1]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[2]  A. Khokhlov On the collapse of weakly charged polyelectrolytes , 1980 .

[3]  J. Joanny,et al.  Stretching necklaces , 2000, cond-mat/0001140.

[4]  Christian Holm,et al.  Fraction of Condensed Counterions around a Charged Rod: Comparison of Poisson−Boltzmann Theory and Computer Simulations , 2000 .

[5]  E. R. Smith Electrostatic energy in ionic crystals , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[7]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Albert H. Widmann,et al.  A comparison of Ewald summation techniques for planar surfaces , 1997 .

[9]  Andrey V. Dobrynin,et al.  Cascade of Transitions of Polyelectrolytes in Poor Solvents , 1996 .

[10]  Kurt Kremer,et al.  The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study , 1995 .

[11]  R. E. Rosensweig,et al.  Directions in ferrohydrodynamics (invited) , 1985 .

[12]  H. Limbach,et al.  Conformational properties of poor solvent polyelectrolytes , 2002 .

[13]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[14]  J. Caillol,et al.  Comments on the numerical simulations of electrolytes in periodic boundary conditions , 1994 .

[15]  John Lekner,et al.  Summation of Coulomb fields in computer-simulated disordered systems , 1991 .

[16]  Kurt Kremer,et al.  Structure of polyelectrolytes in poor solvent , 2002, cond-mat/0206274.

[17]  M. Berkowitz,et al.  Ewald summation for systems with slab geometry , 1999 .

[18]  J. Shelley Boundary condition effects in simulations of water confined between planar walls , 1996 .

[19]  Axel Arnold,et al.  MMM2D: A fast and accurate summation method for electrostatic interactions in 2D slab geometries , 2002 .

[20]  R. Sperb,et al.  An Alternative to Ewald Sums, Part 2: The Coulomb Potential in a Periodic System , 1999 .

[21]  J. W. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Correlation length of hydrophobic polyelectrolyte solutions , 2003, cond-mat/0302472.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  J. Joanny Scaling Description of Charged Polymers , 2001 .

[25]  I. Tsukerman,et al.  A flexible local approximation method for electro- and magnetostatics , 2004, IEEE Transactions on Magnetics.

[26]  P. Gennes,et al.  Small angle neutron scattering by semi-dilute solutions of polyelectrolyte , 1979 .

[27]  K. Esselink A comparison of algorithms for long-range interactions , 1995 .

[28]  M. Pütz,et al.  Optimization techniques for parallel molecular dynamics using domain decomposition , 1998 .

[29]  Mark E. Tuckerman,et al.  A new reciprocal space based treatment of long range interactions on surfaces , 2002 .

[30]  P. Pincus,et al.  Counterion-Condensation-Induced Collapse of Highly Charged Polyelectrolytes , 1998 .

[31]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[32]  Christian Holm,et al.  Electrostatic effects in soft matter and biophysics , 2001 .

[33]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[34]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[35]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[36]  R. Sperb,et al.  An Alternative to Ewald Sums part I: Identities for Sums , 1998 .

[37]  H. Limbach,et al.  Poor-solvent polyelectrolytes , 2003 .

[38]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[39]  Hakeem,et al.  Phylogenetic classification of the world ’ s tropical forests , 2018 .

[40]  M. Rawiso,et al.  X-ray scattering study of a poly(methacrylic acid) sample as a function of its neutralization degree , 1999 .

[41]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[42]  J. Perram,et al.  Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems , 1992 .

[43]  Philippe H. Hünenberger,et al.  Optimal charge-shaping functions for the particle–particle—particle–mesh (P3M) method for computing electrostatic interactions in molecular simulations , 2000 .

[44]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[45]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[46]  End effects of strongly charged polyelectrolytes: A molecular dynamics study , 2001, cond-mat/0105228.

[47]  H. G. Petersen Accuracy and efficiency of the particle mesh Ewald method , 1995 .

[48]  Stefan Boresch,et al.  Presumed versus real artifacts of the Ewald summation technique: The importance of dielectric boundary conditions , 1997 .

[49]  Masuhiro Mikami,et al.  Rapid calculation of two-dimensional Ewald summation , 2001 .

[50]  M. Deserno,et al.  Attraction and Ionic Correlations between Charged Stiff Polyelectrolytes , 2002, cond-mat/0206126.

[51]  F. Lafuma,et al.  Effect of Solvent Quality on the Behaviour of Highly Charged Polyelectrolytes , 1995 .

[52]  Martial Mazars Comment on “Rapid calculation of the Coulomb component of the stress tensor for three-dimensional systems with two-dimensional periodicity” [J. Chem. Phys. 115, 4457 (2001)] , 2002 .

[53]  Masaaki Kawata,et al.  Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity , 2001 .

[54]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[55]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[56]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[57]  Christian Holm,et al.  Estimate of the Cutoff Errors in the Ewald Summation for Dipolar Systems , 2001 .

[58]  Axel Arnold,et al.  A novel method for calculating electrostatic interactions in 2D periodic slab geometries , 2002 .

[59]  D. E. Parry The electrostatic potential in the surface region of an ionic crystal , 1975 .

[60]  A. Dobrynin,et al.  Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes , 2001 .

[61]  J. F. Hart,et al.  Ewald summation technique for one-dimensional charge distributions , 2001 .

[62]  C. Sagui,et al.  Multigrid methods for classical molecular dynamics simulations of biomolecules , 2001 .

[63]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[64]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  Gerhard Hummer,et al.  Molecular Theories and Simulation of Ions and Polar Molecules in Water , 1998 .

[66]  T. Waigh,et al.  Semidilute and Concentrated Solutions of a Solvophobic Polyelectrolyte in Nonaqueous Solvents , 2001 .

[67]  M. Deserno,et al.  HOW TO MESH UP EWALD SUMS. II. AN ACCURATE ERROR ESTIMATE FOR THE PARTICLE-PARTICLE-PARTICLE-MESH ALGORITHM , 1998, cond-mat/9807100.

[68]  Instabilities of charged polyampholytes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[70]  M. Deserno,et al.  Theory and simulations of rigid polyelectrolytes , 2002, cond-mat/0203599.

[71]  A C Maggs,et al.  Local simulation algorithms for Coulombic interactions , 2002, Physical review letters.

[72]  R. Strebel,et al.  An Alternative to Ewald Sums. Part 3: Implementation and Results , 2001 .

[73]  M. Porto Ewald summation of electrostatic interactions of systems with finite extent in two of three dimensions , 2000 .

[74]  J. Huisman The Netherlands , 1996, The Lancet.

[75]  William H. Press,et al.  Numerical recipes in C , 2002 .

[76]  C. Holm,et al.  Single-Chain Properties of Polyelectrolytes in Poor Solvent† , 2003 .

[77]  Eckhard Spohr,et al.  Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions , 1997 .

[78]  M. Hara Polyelectrolytes : science and technology , 1993 .

[79]  A. Dobrynin,et al.  Adsorption of Hydrophobic Polyelectrolytes at Oppositely Charged Surfaces , 2002 .

[80]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[81]  F Müller-Plathe,et al.  Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  Axel Arnold,et al.  Electrostatics in periodic slab geometries. II , 2002 .

[83]  M. Dixon,et al.  Interionic potentials in alkali halides and their use in simulations of the molten salts , 1976 .

[84]  Axel Arnold,et al.  Electrostatics in Periodic Slab Geometries I , 2002 .

[85]  Ewald type summation method for electrostatic interactions in computer simulations of a three-dimensional system periodic in one direction , 2002 .

[86]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[87]  Richard A. L. Jones Soft Condensed Matter , 2002 .

[88]  Mehran Kardar,et al.  EXCESS CHARGE IN POLYAMPHOLYTES , 1994 .