GABA‐like immunoreactivity in the cat retina: Electron microscopy

The synaptic organization of the cat retina was studied with antibodies against the GABA‐GA (glutaraldehyde)‐BSA (bovine serum albumin) complex. The postembedding technique combined with immunogold labelling ensured ultrastructural preservation and made identification of synapses possible. The most common putative GABA‐ergic synapses in the inner plexiform layer were amacrine‐to‐bipolar‐cell synapses followed by amacrine‐to‐ganglion‐cell and amacrine‐to‐amacrine‐cell synapses. GABA‐immunoreactive amacrine cells received most of their synaptic input from bipolar cells followed by other amacrine cells. Synapses between two labelled amacrine cells were common. Rod bipolar cells were the predominant input source and also the preferred output target of GABA‐labelled amacrine cells. OFF‐ and ON‐ganglion cells received putative GABA‐ergic synapses at their dendrites in laminas a and b, respectively, and also at their somata.

[1]  M. Bendayan,et al.  Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. , 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[2]  P. Sterling,et al.  Microcircuitry of beta ganglion cells in cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  H. Kolb,et al.  A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.

[4]  M. Caserta,et al.  Electron microscopy of glutamate decarboxylase (GAD) immunoreactivity in the inner plexiform layer of the rhesus monkey retina , 1986, Journal of neurocytology.

[5]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  H. Kolb,et al.  Neural circuitry of the cat retina: cone pathways to ganglion cells , 1981, Vision Research.

[7]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Helga Kolb,et al.  The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations , 1974, The Journal of comparative neurology.

[9]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[10]  R. Pourcho,et al.  Visualization of endogenous glycine in cat retina: an immunocytochemical study with Fab fragments , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  R. Pourcho,et al.  Immunocytochemical demonstration of glycine in retina , 1985, Brain Research.

[12]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  R. Pourcho Autoradiographic localization of [3H]muscimol in the cat retina , 1981, Brain Research.

[14]  H. Ikeda,et al.  Transmitters mediating inhibition of ganglion cells in the cat retina: Iontophoretic studies in vivo , 1983, Neuroscience.

[15]  A. H. Mulder An overview of subcellular localization, release and termination of action of amine, amino acid and peptide neurotransmitters in the central nervous system. , 1982, Progress in brain research.

[16]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[17]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[18]  B. Boycott,et al.  Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  R. Pourcho Uptake of [3H]glycine and [3H]GABA by amacrine cells in the cat retina , 1980, Brain Research.

[20]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[21]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[22]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[23]  P Sterling,et al.  Accumulation of (3H)glycine by cone bipolar neurons in the cat retina , 1986, The Journal of comparative neurology.

[24]  P. Sterling,et al.  Molecular specificity of defined types of amacrine synapse in cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[26]  T. Voigt,et al.  Dopaminergic innervation of A II amacrine cells in mammalian retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. Pourcho,et al.  A combined Golgi and autoradiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[29]  P Sterling,et al.  Rod bipolar array in the cat retina: Pattern of input from rods and GABA‐accumulating amacrine cells , 1987, The Journal of comparative neurology.

[30]  A. Hendrickson,et al.  Stratified distribution of synapses in the inner plexiform layer of primate retina , 1987, The Journal of comparative neurology.

[31]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[32]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[33]  M. Dubin The inner plexiform layer of the vertebrate retina: A quantitative and comparative electron microscopic analysis , 1970, The Journal of comparative neurology.

[34]  H. Wässle,et al.  Action and localization of gamma‐aminobutyric acid in the cat retina. , 1985, The Journal of physiology.

[35]  Postembedding immunocytochemical GABA labeling in rat neocortex cultures: Applicability in quantitative studies , 1987, Neuroscience Letters.

[36]  P. Rakic,et al.  GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina , 1986, Nature.

[37]  R. Pourcho,et al.  Neuronal subpopulations in cat retina which accumulate the GABA agonist, (3H)muscimol: A combined Golgi and autoradiographic study , 1983, The Journal of comparative neurology.

[38]  Richard H. Masland,et al.  The cholinergic amacrine cell , 1986, Trends in Neurosciences.

[39]  I. Holmgren-Taylor Electron microscopical observations on the indoleamine‐accumulating neurons and their synaptic connections in the retina of the cat , 1982, The Journal of comparative neurology.

[40]  Helga Kolb,et al.  Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina , 1983, Vision Research.

[41]  R W West,et al.  Synaptic connections of the interplexiform cell in the retina of the cat , 1977, Journal of neurocytology.

[42]  Helga Kolb,et al.  Amacrine cells of the cat retina , 1981, Vision Research.

[43]  Christopher Brandon,et al.  Cholinergic neurons in the rabbit retina: dendritic branching and ultrastructural connectivity , 1987, Brain Research.

[44]  E. V. Famiglietti,et al.  Functional architecture of cone bipolar cells in mammalian retina , 1981, Vision Research.

[45]  R. Pourcho Dopaminergic amacrine cells in the cat retina , 1982, Brain Research.

[46]  P Sterling,et al.  Interplexiform cell in cat retina: identification by uptake of gamma-[3H]aminobutyric acid and serial reconstruction. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[48]  H. Kolb,et al.  The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations , 1977, Journal of neurocytology.

[49]  H. Kolb The inner plexiform layer in the retina of the cat: electron microscopic observations , 1979, Journal of neurocytology.

[50]  P Sterling,et al.  Four types of amacrine in the cat retina that accumulate GABA , 1983, The Journal of comparative neurology.

[51]  J. E. Vaughn,et al.  GABAergic amacrine cells in rat retina: Immunocytochemical identification and synaptic connectivity , 1981, The Journal of comparative neurology.

[52]  H. Wässle,et al.  GABA‐like immunoreactivity in the cat retina: Light microscopy , 1989, The Journal of comparative neurology.

[53]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.