Malaria Vaccine Development and How External Forces Shape It: An Overview

The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.

[1]  Kevin Marsh,et al.  Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. , 2013, The New England journal of medicine.

[2]  K. H. Khan DNA vaccines: roles against diseases. , 2013, Germs.

[3]  W. Kipp The Making of a Tropical Disease: A Short History of Malaria , 2012 .

[4]  Y. Jaffré The Making of a Tropical Disease: A Short History of Malaria by Randall M. Packard , 2012 .

[5]  Susana S. Caetano,et al.  Early skin immunological disturbance after Plasmodium-infected mosquito bites. , 2012, Cellular Immunology.

[6]  P. Karanis,et al.  Malaria vaccines: looking back and lessons learnt. , 2011, Asian Pacific journal of tropical biomedicine.

[7]  V. Moorthy The elusive malaria vaccine: miracle or mirage? , 2010 .

[8]  M. Löbermann,et al.  [Climate change and global warming. Towards the global spread of tropical infectious diseases? Climate Change and Global Warming]. , 2009, Pharmazie in unserer Zeit.

[9]  A. Holder Malaria Vaccines: Where Next? , 2009, PLoS pathogens.

[10]  B. Greenwood,et al.  Do we still need a malaria vaccine? , 2009, Parasite immunology.

[11]  C. Schubert Boosting our best shot , 2009, Nature Medicine.

[12]  R. Price,et al.  Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) in acute malaria , 2009, Malaria Journal.

[13]  H. Berg Global status of DDT and its alternatives for use in vector control to prevent disease , 2009 .

[14]  M. Good The hope but challenge for developing a vaccine that might control malaria , 2009, European journal of immunology.

[15]  R. Ménard,et al.  Plasmodium pre-erythrocytic stages: what's new? , 2008, Trends in parasitology.

[16]  Michele A. Kutzler,et al.  DNA vaccines: ready for prime time? , 2008, Nature Reviews Genetics.

[17]  C. Bourgouin,et al.  Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. , 2008, Microbes and infection.

[18]  P. Sinnis,et al.  The skin stage of malaria infection: biology and relevance to the malaria vaccine effort. , 2008, Future microbiology.

[19]  B. Combadière,et al.  Particle-based vaccines for transcutaneous vaccination. , 2008, Comparative immunology, microbiology and infectious diseases.

[20]  B. Maher Malaria: The end of the beginning , 2008, Nature.

[21]  M. Prevost,et al.  Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. , 2008, Cell host & microbe.

[22]  E. Callaway Malaria research should go 'back to basics'. , 2007, Nature.

[23]  P. Sinnis,et al.  A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. , 2007, Parasitology international.

[24]  J. Shiloach,et al.  Long-lasting and transmission-blocking activity of antibodies to Plasmodium falciparum elicited in mice by protein conjugates of Pfs25 , 2007, Proceedings of the National Academy of Sciences.

[25]  J. Wolchok,et al.  Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. , 2006, Vaccine.

[26]  A. Da'dara,et al.  DNA vaccines against tropical parasitic diseases , 2005, Expert review of vaccines.

[27]  P. Offit,et al.  Why are pharmaceutical companies gradually abandoning vaccines? , 2005, Health affairs.

[28]  S. Foote Can nature's defence against malaria be mimicked by the development of host-directed therapies? , 2004, The Pharmacogenomics Journal.

[29]  S. Hoffman,et al.  Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine , 2003, Journal of Experimental Biology.

[30]  F. André,et al.  Vaccinology: past achievements, present roadblocks and future promises. , 2003, Vaccine.

[31]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[32]  M. Good Towards a blood-stage vaccine for malaria: are we following all the leads? , 2001, Nature Reviews Immunology.

[33]  S. Hoffman,et al.  DNA-based vaccines against malaria: status and promise of the Multi-Stage Malaria DNA Vaccine Operation. , 2001, International journal for parasitology.

[34]  Sydney Brenner,et al.  The End of the Beginning , 2000, Science.

[35]  H. Bedford,et al.  Concerns about immunisation , 2000, BMJ : British Medical Journal.

[36]  B. Kalinna DNA vaccines for parasitic infections , 1997, Immunology and cell biology.

[37]  C. Long,et al.  Malaria vaccines: multiple targets. , 1994, Science.

[38]  P. Ewald Evolution of Infectious Disease , 1993 .

[39]  S. Segawa,et al.  End of the beginning , 1990, Nature.

[40]  J. Vanderberg,et al.  Protective Immunity produced by the Injection of X-irradiated Sporozoites of Plasmodium berghei , 1967, Nature.

[41]  M. Löbermann,et al.  Wegbereiter für die globale Ausbreitung tropischer Infektionskrankheiten? Klimawandel und Globale Erwärmung , 2009 .

[42]  I. Medizin,et al.  Innere Medizin , 1927, Der Internist.

[43]  S. Cohen Progress in malaria vaccine development. , 1982, British medical bulletin.