A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses

Abstract The global population is expected to reach 9.8 billion by 2050. There is an exponential growth of food production to meet the needs of the growing population. However, the limited land and water resources, climate change, and an increase in extreme events likely to pose a significant threat for achieving the sustainable agriculture goal. Given these challenges, food security is included in the United Nations’ Sustainable Development Goals (SDGs). Since the advent of Sputnik, followed by the Explorer missions, satellite remote sensing is assisting us in collecting the data at global scales. In this work, we review how satellite remote sensing information is utilized to assess and manage agriculture, an important component of ecohydrology. Overall, three critical aspects of agriculture are considered: (a) crop growth and yield through empirical models, physics-based models, and data assimilation in crop models, (b) applications pertaining to irrigation, which include mapping irrigation areas and quantification of irrigation, and (c) crop losses due to pests, diseases, crop lodging, and weeds. The emphasis is on satellite sensors in optical, thermal, microwave, and fluorescence frequencies. We conclude the review with an outlook of challenges and recommendations. This paper is the first of a two-part review series. The second part reviews the role of satellite remote sensing in water security, wherein we discuss the aspects of water quality and quantity along with extremes (floods and droughts).

[1]  Thomas J. Jackson,et al.  Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean , 2012, IEEE Geoscience and Remote Sensing Letters.

[2]  Dara Entekhabi,et al.  L-band vegetation optical depth and effective scattering albedo estimation from SMAP. , 2017 .

[3]  Luis Alonso,et al.  Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation , 2011, IEEE Geoscience and Remote Sensing Letters.

[4]  Soumya Bandyopadhyay,et al.  Evaluation of Radarsat-2 quad-pol SAR time-series images for monitoring groundwater irrigation , 2019, Int. J. Digit. Earth.

[5]  Xinkai Zhu,et al.  Estimation of biomass in wheat using random forest regression algorithm and remote sensing data , 2016 .

[6]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[7]  Dharmendra Singh,et al.  Discerning shifting irrigation practices from passive microwave radiometry over Punjab and Haryana , 2017 .

[8]  Yang Shao,et al.  Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[9]  A. Gitelson,et al.  Informative spectral bands for remote green LAI estimation in C3 and C4 crops , 2016 .

[10]  Gennadii Donchyts,et al.  Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation , 2018, Hydrology and Earth System Sciences.

[11]  P. Thenkabail,et al.  Spectral Matching Techniques to Determine Historical Land-use/Land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets , 2007 .

[12]  Senthold Asseng,et al.  Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches , 2018, Agricultural and Forest Meteorology.

[13]  L. Alonso,et al.  A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems , 2013 .

[14]  Rui Sun,et al.  Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data , 2016, Remote. Sens..

[15]  Stefano Pignatti,et al.  Wheat lodging monitoring using polarimetric index from RADARSAT-2 data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[16]  Maria Adamo,et al.  Ailanthus altissima mapping from multi-temporal very high resolution satellite images , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[17]  P. Sellers Canopy reflectance, photosynthesis, and transpiration. II. the role of biophysics in the linearity of their interdependence , 1987 .

[18]  L. Brocca,et al.  Daily precipitation estimation through different microwave sensors: Verification study over Italy , 2017 .

[19]  Petra Döll,et al.  A global data set of the extent of irrigated land from 1900 to 2005 , 2014 .

[20]  Alexandre Bouvet,et al.  Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications , 2017 .

[21]  Jian Guo,et al.  Upscaling Solar-Induced Chlorophyll Fluorescence from an Instantaneous to Daily Scale Gives an Improved Estimation of the Gross Primary Productivity , 2018, Remote. Sens..

[22]  Yanbo Huang,et al.  Monitoring plant diseases and pests through remote sensing technology: A review , 2019, Comput. Electron. Agric..

[23]  J. Qi,et al.  A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy , 2007 .

[24]  Daniel Spengler,et al.  Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data , 2019, Remote. Sens..

[25]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[26]  Dennis Wichelns,et al.  Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater , 2015 .

[27]  P. Gowda,et al.  Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum , 2017 .

[28]  Simonetta Paloscia,et al.  Microwave vegetation indexes for detecting biomass and water conditions of agricultural crops , 1992 .

[29]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  A. Mishra,et al.  A review of remote sensing applications for water security: Quantity, quality, and extremes , 2020 .

[31]  W. Verhoef,et al.  Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. , 2019, Remote sensing of environment.

[32]  Zhihao Qin,et al.  Estimation of Crop LAI using hyperspectral vegetation indices and a hybrid inversion method , 2015 .

[33]  B. Wylie,et al.  NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA , 2013 .

[34]  Jie Dong,et al.  Mapping Irrigated Areas of Northeast China in Comparison to Natural Vegetation , 2019, Remote. Sens..

[35]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[36]  B. Duchemin,et al.  Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops , 2011 .

[37]  D. Raes,et al.  AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize , 2009 .

[38]  Narendra Kumar Gontia,et al.  Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry , 2008 .

[39]  Stanley Wood,et al.  Drivers of change in global agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  Marko Scholze,et al.  Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: Model description and information content , 2017 .

[41]  R. Reedy,et al.  Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley , 2012, Proceedings of the National Academy of Sciences.

[42]  C. Atzberger Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models , 2004 .

[43]  He Li,et al.  Retrieval of Winter Wheat Leaf Area Index from Chinese GF-1 Satellite Data Using the PROSAIL Model , 2018, Sensors.

[44]  M. J. Pringle,et al.  An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[45]  Dara Entekhabi,et al.  Relationship Between Vegetation Microwave Optical Depth and Cross-Polarized Backscatter From Multiyear Aquarius Observations , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[46]  Hari Shanker Srivastava,et al.  Application potentials of synthetic aperture radar interferometry for land-cover mapping and crop-height estimation , 2006 .

[47]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[48]  Pere Quintana-Seguí,et al.  Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes , 2016 .

[49]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Eric F. Wood,et al.  Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms , 2017 .

[51]  Armando Apan,et al.  Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery , 2004 .

[52]  F. Aires,et al.  Expected Performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an All‐Weather and High Spatial Resolution Estimation of Ocean and Sea Ice Parameters , 2018, Journal of Geophysical Research: Oceans.

[53]  S. M. E. Groten,et al.  NDVI—crop monitoring and early yield assessment of Burkina Faso , 1993 .

[54]  Irena Hajnsek,et al.  Estimation of Rice Crop Height From X- and C-Band PolSAR by Metamodel-Based Optimization , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[55]  Blaine L. Blad,et al.  Evaluation of spectral reflectance models to estimate corn leaf area while minimizing the influence of soil background effects , 1986 .

[56]  Marcelo de Carvalho Alves,et al.  Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[57]  S. Paloscia An empirical approach to estimating leaf area index from multifrequency SAR data , 1998 .

[58]  James W. Jones,et al.  The DSSAT cropping system model , 2003 .

[59]  Herman Eerens,et al.  Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[60]  James E. McMurtrey,et al.  Relationship of spectral data to grain yield variation , 1980 .

[61]  John C. Rodda,et al.  World water resources at the beginning of the twenty-first century , 2004 .

[62]  Saibun Tjuatja,et al.  A phase matrix for a dense discrete random medium: evaluation of volume scattering coefficient , 1996, IEEE Trans. Geosci. Remote. Sens..

[63]  C. Bernhofer,et al.  Investigating the relationship between NDVI and LAI in semi-arid grassland in Inner Mongolia using in-situ measurements , 2009 .

[64]  Jianxiu Qiu,et al.  The Potential Utility of Satellite Soil Moisture Retrievals for Detecting Irrigation Patterns in China , 2018, Water.

[65]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[66]  M. Hayes,et al.  Using NOAA AVHRR data to estimate maize production in the United States Corn Belt , 1996 .

[67]  Naota Hanasaki,et al.  An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model , 2010 .

[68]  N. Toomanian,et al.  Irrigated area determination by NOAA-Landsat upscaling techniques, Zayandeh River Basin, Isfahan, Iran , 2004 .

[69]  Adriano Camps,et al.  L-band vegetation optical depth seasonal metrics for crop yield assessment , 2018, Remote Sensing of Environment.

[70]  A. J. Stern,et al.  Application of MODIS derived parameters for regional crop yield assessment , 2005 .

[71]  Sudhanshu Sekhar Panda,et al.  Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques , 2010, Remote. Sens..

[72]  Avik Bhattacharya,et al.  Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[73]  Xiaoyu Song,et al.  Exploring the Best Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression , 2014, Remote. Sens..

[74]  Resolutions and Decisions Adopted by the General Assembly During its Seventy-fifth Session: Volume III , 2021, Resolutions and Decisions Adopted by the General Assembly.

[75]  Heather McNairn,et al.  The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index , 2011 .

[76]  Guijun Yang,et al.  Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data , 2020 .

[77]  Compton J. Tucker,et al.  SENSOR DESIGN FOR MONITORING VEGETATION CANOPIES , 1976 .

[78]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[79]  Lifeng Luo,et al.  Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data , 2018 .

[80]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[81]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[82]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[83]  Mark A. Friedl,et al.  Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[84]  Nicolas Baghdadi,et al.  Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island , 2009 .

[85]  Paul D. Colaizzi,et al.  A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum , 2012 .

[86]  A. Giebel,et al.  Early detection of Fusarium infection in wheat using hyper-spectral imaging , 2011 .

[87]  Jasmeet Judge,et al.  Assimilation of SMOS Soil Moisture for Quantifying Drought Impacts on Crop Yield in Agricultural Regions , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[88]  Lingli Zhao,et al.  Characterizing Lodging Damage in Wheat and Canola Using Radarsat-2 Polarimetric SAR Data , 2017 .

[89]  Adrian K. Fung,et al.  A microwave scattering model for layered vegetation , 1992, IEEE Trans. Geosci. Remote. Sens..

[90]  Simonetta Paloscia,et al.  The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops , 2001, IEEE Trans. Geosci. Remote. Sens..

[91]  Liangyun Liu,et al.  Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence , 2017 .

[92]  Andreas Schumann,et al.  Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets , 2008 .

[93]  John Odindi,et al.  Comparison between WorldView-2 and SPOT-5 images in mapping the bracken fern using the random forest algorithm , 2014 .

[94]  W. Mirschel,et al.  The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics , 2011 .

[95]  Chaoyang Wu,et al.  Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .

[96]  Philip Lewis,et al.  Assimilation of remote sensing into crop growth models: Current status and perspectives , 2019, Agricultural and Forest Meteorology.

[97]  Lars Eklundh,et al.  Mapping insect defoliation in Scots pine with MODIS time-series data , 2009 .

[98]  Leung Tsang,et al.  Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte-Carlo simulations , 1995 .

[99]  L. Johnson Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard , 2003 .

[100]  Wenjiang Huang,et al.  New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery , 2018, Sensors.

[101]  M. Chakraborty,et al.  Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data , 2005 .

[102]  Mirco Boschetti,et al.  Remote sensing-based crop lodging assessment: Current status and perspectives , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[103]  Li Wang,et al.  Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments , 2018, PloS one.

[104]  Rick Mueller,et al.  Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S. , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[105]  B. Mohanty,et al.  Root Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling , 2006 .

[106]  H.W.J. van Kasteren,et al.  Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. II. Wheat, barley, and oats; the impact of canopy structure , 1990 .

[107]  Abd Ali Naseri,et al.  A satellite based crop water stress index for irrigation scheduling in sugarcane fields , 2017 .

[108]  Andrew K. Skidmore,et al.  Relating X-band SAR Backscattering to Leaf Area Index of Rice in Different Phenological Phases , 2019, Remote. Sens..

[109]  M. A. Asoodar,et al.  Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data , 2019, Geocarto International.

[110]  Andreas Hueni,et al.  Effect of environmental conditions on sun-induced fluorescence in a mixed forest and a cropland , 2018, Remote Sensing of Environment.

[111]  Wolfram Mauser,et al.  Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study , 2018, Remote. Sens..

[112]  Hui Lin,et al.  The relationship between the leaf area index (LAI) of rice and the C‐band SAR vertical/horizontal (VV/HH) polarization ratio , 2009 .

[113]  Alfonso Calera,et al.  Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users , 2017, Sensors.

[114]  W. Collins,et al.  Remote sensing of crop type and maturity , 1978 .

[115]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[116]  N. Elagib,et al.  Implications of non-sustainable agricultural water policies for the water-food nexus in large-scale irrigation systems: A remote sensing approach , 2017 .

[117]  David M. Johnson An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States , 2014 .

[118]  José F. Moreno,et al.  Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model , 2013, Remote. Sens..

[119]  S. Prince A model of regional primary production for use with coarse resolution satellite data , 1991 .

[120]  Thuy Le Toan,et al.  Branching model for vegetation , 1992, IEEE Trans. Geosci. Remote. Sens..

[121]  M. Rosegrant,et al.  Green and blue water accounting in the Ganges and Nile basins: Implications for food and agricultural policy , 2010 .

[122]  S. Robinson,et al.  Food Security: The Challenge of Feeding 9 Billion People , 2010, Science.

[123]  Roger H. Lang,et al.  Scattering from thin dielectric disks , 1984 .

[124]  Luis Alonso,et al.  Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications , 2009 .

[125]  R. Betts,et al.  Climate change impacts on global agriculture , 2010, Climatic Change.

[126]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[127]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[128]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[129]  Brian K. Hornbuckle,et al.  Initial Validation of SMOS Vegetation Optical Thickness in Iowa , 2013, IEEE Geosci. Remote. Sens. Lett..

[130]  Christopher O. Justice,et al.  A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and Validation , 2016, Remote. Sens..

[131]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[132]  S. Chakraborty,et al.  Climate change, plant diseases and food security: an overview , 2011 .

[133]  W. Wagner,et al.  Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data , 2014 .

[134]  Muddu Sekhar,et al.  Comparison of three remote sensing based models for the estimation of latent heat flux over India , 2017 .

[135]  Bin Yang,et al.  Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: Theoretical Background and Implementation , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[136]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[137]  T. Mo,et al.  The Effects of Soil Moisture, Surface Roughness, and Vegetation on L-Band Emission and Backscatter , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Søren Hansen,et al.  Daisy: an open soil-crop-atmosphere system model , 2000, Environ. Model. Softw..

[139]  Ghassem R. Asrar,et al.  Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle , 1985 .

[140]  Onisimo Mutanga,et al.  Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions , 2017, Precision Agriculture.

[141]  Stephan J. Maas,et al.  Remote sensing and crop production models: present trends , 1992 .

[142]  Prasad S. Thenkabail,et al.  Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India) , 2011 .

[143]  Bernardo Friedrich Theodor Rudorff,et al.  Spectral response of wheat and its relationship to agronomic variables in the tropical region , 1990 .

[144]  Laurent Ferro-Famil,et al.  Analysis of seasonal effects on forest parameter estimation of Indian deciduous forest using TerraSAR-X PolInSAR acquisitions , 2017 .

[145]  Wolfram Mauser,et al.  Inversion of a canopy reflectance model using hyperspectral imagery for monitoring wheat growth and estimating yield , 2009, Precision Agriculture.

[146]  Wei Huang,et al.  A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results , 2004 .

[147]  Ze He,et al.  Monitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets , 2018, Remote. Sens..

[148]  B. K. Bhattacharya,et al.  A multi-stage tracking for mustard rot disease combining surface meteorology and satellite remote sensing , 2013 .

[149]  Jiancheng Shi,et al.  Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E , 2008 .

[150]  P. Manavalan,et al.  Irrigated crops monitoring through seasons using digital change detection analysis of IRS-LISS 2 data , 1995 .

[151]  C. Müller,et al.  Constraints and potentials of future irrigation water availability on agricultural production under climate change , 2013, Proceedings of the National Academy of Sciences.

[152]  Luca Brocca,et al.  How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[153]  I. Herrmann,et al.  LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands , 2011 .

[154]  Kees Klein Goldewijk,et al.  Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1 , 2010 .

[155]  Minha Choi,et al.  Detecting global irrigated areas by using satellite and reanalysis products. , 2019, The Science of the total environment.

[156]  W. May,et al.  Estimating canola (Brassica napus L.) yield potential using an active optical sensor , 2009 .

[157]  Manuel Campos-Taberner,et al.  Climate Data Records of Vegetation Variables from Geostationary SEVIRI/MSG Data: Products, Algorithms and Applications , 2019, Remote. Sens..

[158]  Jianxiu Qiu,et al.  Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[159]  Juan M. Lopez-Sanchez,et al.  Model Limitations and Parameter-Estimation Methods for Agricultural Applications of Polarimetric SAR Interferometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[160]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[161]  James H. Everitt,et al.  Using Satellite Data to Map False Broomweed (Ericameria austrotexana) Infestations on South Texas Rangelands , 1993, Weed Technology.

[162]  Irene E. Teubner,et al.  The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA , 2019, Earth System Science Data.

[163]  Luca Brocca,et al.  Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data , 2019, Hydrology and Earth System Sciences.

[164]  Tsuyoshi Akiyama,et al.  Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer , 1993 .

[165]  Roberto Benedetti,et al.  On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna , 1993 .

[166]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[167]  Y. G. Prasad,et al.  Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae) , 2011 .

[168]  Cristian Rossi,et al.  Paddy-Rice Monitoring Using TanDEM-X , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[169]  Joanne C. White,et al.  Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring , 2008 .

[170]  Arnaud Mialon,et al.  Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA , 2014 .

[171]  Bruce K. Wylie,et al.  Satellite and ground-based pasture production assessment in Niger: 1986-1988 , 1991 .

[172]  Wenbin Liu,et al.  Spatial-Temporal Dynamics of Cropping Frequency in Hubei Province over 2001–2015 , 2017, Sensors.

[173]  Cuizhen Wang,et al.  Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice , 2014 .

[174]  Prasad S. Thenkabail,et al.  Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .

[175]  David M. Le Vine,et al.  A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory , 1995 .

[176]  Seiho Uratsuka,et al.  Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables , 2002 .

[177]  Stephan J. Maas,et al.  Spider Mite Detection and Canopy Component Mapping in Cotton Using Hyperspectral Imagery and Spectral Mixture Analysis , 2004, Precision Agriculture.

[178]  E. Nilsen,et al.  Physiology of Plants Under Stress , 1987 .

[179]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[180]  Wade T. Crow,et al.  Version 4 of the SMAP Level‐4 Soil Moisture Algorithm and Data Product , 2019, Journal of Advances in Modeling Earth Systems.

[181]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[182]  F. Baret,et al.  Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems , 2008 .

[183]  C. A. van Diepen,et al.  Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts , 2007 .

[184]  Mirco Boschetti,et al.  Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data , 2020 .

[185]  Jeffrey A. Cardille,et al.  Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine , 2019, Remote Sensing of Environment.

[186]  Mehrez Zribi,et al.  Irrigation Mapping Using Sentinel-1 Time Series at Field Scale , 2018, Remote. Sens..

[187]  S. Idso,et al.  Canopy temperature as a crop water stress indicator , 1981 .

[188]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[189]  Prasad S. Thenkabail,et al.  Influence of Resolution in Irrigated Area Mapping and Area Estimation , 2009 .

[190]  Heather McNairn,et al.  An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[191]  Gabrielle De Lannoy,et al.  Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation , 2016 .

[192]  J. Everitt,et al.  Canopy Light Reflectance and Remote Sensing of Shin Oak (Quercus havardii) and Associated Vegetation , 1993, Weed Science.

[193]  Irena Hajnsek,et al.  First Results of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X Dual-Pol Images , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[194]  Sujay V. Kumar,et al.  Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes , 2015 .

[195]  Esra Erten,et al.  Retrieval of vegetation height in rice fields using polarimetric SAR interferometry with TanDEM-X data , 2017 .

[196]  Wade T. Crow,et al.  Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals , 2010 .

[197]  Rick L. Lawrence,et al.  Wheat yield estimates using multi-temporal NDVI satellite imagery , 2002 .

[198]  A. Huete,et al.  Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .

[199]  Yuanjie Li,et al.  Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics , 2009, Remote. Sens..

[200]  Andrew E. Suyker,et al.  SMOS Optical Thickness Changes in Response to the Growth and Development of Crops, Crop Management, and Weather , 2016 .

[201]  Maurice Borgeaud,et al.  The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[202]  A. Rinaldo,et al.  Ecohydrology of Terrestrial Ecosystems , 2010 .

[203]  Clement Atzberger,et al.  Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection , 2013, Remote. Sens..

[204]  M. Jurado-Expósito,et al.  Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management , 2014 .

[205]  Parul Patel,et al.  Crop Height Estimation Using RISAT-1 Hybrid-Polarized Synthetic Aperture Radar Data , 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[206]  Peter Hoogeboom,et al.  The Dutch ROVE Program , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[207]  A. Huete,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995 .

[208]  Dino Ienco,et al.  Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain , 2019, Remote. Sens..

[209]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[210]  Jihua Wang,et al.  Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image , 2014, Remote. Sens..

[211]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[212]  Simonetta Paloscia,et al.  Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil Basin , 2013 .

[213]  David E. Rosenberg,et al.  Hydro-economic models: concepts, design, applications, and future prospects. , 2009 .

[214]  M. Rosegrant,et al.  Irrigation and food security in the 21st century , 1997 .

[215]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[216]  J. Wolf,et al.  WOFOST: a simulation model of crop production. , 1989 .

[217]  Yang Shao,et al.  An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[218]  Vimal Mishra,et al.  Descriptor : Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015 , 2017 .

[219]  Compton J. Tucker,et al.  Monitoring global vegetation using Nimbus-7 37 GHz Data Some empirical relations , 1987 .

[220]  Chunjiang Zhao,et al.  Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. , 2016, Pest management science.

[221]  Jakob J. van Zyl,et al.  A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[222]  Arnaud Mialon,et al.  Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices , 2016 .

[223]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[224]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[225]  Xavier Blaes,et al.  Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images , 2003 .

[226]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[227]  L. Tian,et al.  A Review on Remote Sensing of Weeds in Agriculture , 2004, Precision Agriculture.

[228]  Mehrez Zribi,et al.  Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data , 2018, Remote. Sens..

[229]  C. The Nebraska Center-Pivot Inventory : An Example of Operational Satellite Remote Sensing on a Long-Term Basis , 2008 .

[230]  A. Al Bitar,et al.  Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms , 2017 .

[231]  Ahmad Al Bitar,et al.  DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[232]  Gulab Singh,et al.  Potential of Space-Borne PolInSAR for Forest Canopy Height Estimation Over India—A Case Study Using Fully Polarimetric L-, C-, and X-Band SAR Data , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[233]  Petra Döll,et al.  Global modeling of irrigation water requirements , 2002 .

[234]  Eric W. Chance,et al.  Trend Detection for the Extent of Irrigated Agriculture in Idaho's Snake River Plain, 1984-2016 , 2018, Remote. Sens..

[235]  Frédéric Baret,et al.  An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications , 2019, Reviews of Geophysics.

[236]  Carsten Brockmann,et al.  Consistent Global Land Cover Maps For Climate Modelling Communities: Current Achievements Of The ESA' Land Cover CCI , 2013 .

[237]  Chris Murphy,et al.  APSIM - Evolution towards a new generation of agricultural systems simulation , 2014, Environ. Model. Softw..

[238]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[239]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[240]  Prasad S. Thenkabail,et al.  Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003 , 2010 .

[241]  Irena Hajnsek,et al.  First Demonstration of Agriculture Height Retrieval With PolInSAR Airborne Data , 2012, IEEE Geoscience and Remote Sensing Letters.

[242]  Prasad S. Thenkabail,et al.  Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data , 2005 .

[243]  Yu Han,et al.  Capability of multidate RADARSAT-2 data to identify sugarcane lodging , 2019, Journal of Applied Remote Sensing.

[244]  Douglas K. Bolton,et al.  Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics , 2013 .

[245]  Leila Guerriero,et al.  A fully polarimetric multiple scattering model for crops , 1995 .

[246]  P. Thenkabail,et al.  Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India , 2006 .

[247]  Wenjiang Huang,et al.  Detecting Aphid Density of Winter Wheat Leaf Using Hyperspectral Measurements , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[248]  F. Kogan,et al.  Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices , 2002 .

[249]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[250]  Wenjiang Huang,et al.  Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat Powdery Mildew at a Regional Scale , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[251]  Bruce W. Pengra,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[252]  Mehrez Zribi,et al.  Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data , 2014, Remote. Sens..

[253]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[254]  Jihua Wang,et al.  Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model , 2015 .

[255]  Wout Verhoef,et al.  Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements , 1991 .

[256]  R. Fischer Definitions and determination of crop yield, yield gaps, and of rates of change , 2015 .

[257]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[258]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[259]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[260]  Joong-Sun Won,et al.  Vegetation Height Estimate in Rice Fields Using Single Polarization TanDEM-X Science Phase Data , 2018, Remote. Sens..

[261]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[262]  J. Kovacs,et al.  Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data , 2017, Remote Sensing of Environment.

[263]  J. A. Peterson,et al.  Mapping flowering Paterson's Curse (Echium plantagineum) around Lake Hume, north eastern Victoria, using Landsat TM data , 1989 .

[264]  Naota Hanasaki,et al.  Incorporating anthropogenic water regulation modules into a land surface model , 2012 .

[265]  M. S. Moran,et al.  Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence , 2014, Proceedings of the National Academy of Sciences.

[266]  Heather McNairn,et al.  RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[267]  Heather McNairn,et al.  Radar Remote Sensing of Agricultural Canopies: A Review , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[268]  Lin Yuan,et al.  Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery , 2017 .

[269]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[270]  T. S. Prasad,et al.  Comparative analysis of red-edge hyperspectral indices , 2003 .

[271]  Thuy Le Toan,et al.  Wheat Crop Mapping by Using ASAR AP Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[272]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[273]  V. Wuwongse,et al.  Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data , 2005 .

[274]  A. Mishra,et al.  Performance of AMSR_E soil moisture data assimilation in CLM4.5 model for monitoring hydrologic fluxes at global scale , 2017 .

[275]  Urs Wegmüller,et al.  C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[276]  Irena Hajnsek,et al.  Comparing Performances of Crop Height Inversion Schemes From Multifrequency Pol-InSAR Data , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[277]  James Hansen,et al.  Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction , 2013 .

[278]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[279]  Shusen Wang,et al.  Crop yield forecasting on the Canadian Prairies using MODIS NDVI data , 2011 .

[280]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[281]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[282]  Wenjiang Huang,et al.  Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery , 2014, PloS one.

[283]  Wenjiang Huang,et al.  Enhanced Regional Monitoring of Wheat Powdery Mildew Based on an Instance-Based Transfer Learning Method , 2019, Remote. Sens..

[284]  J. Indu,et al.  Improvement of land surface model simulations over India via data assimilation of satellite-based soil moisture products , 2019, Journal of Hydrology.

[285]  Martha C. Anderson,et al.  The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields. , 2016 .

[286]  Takeshi Motohka,et al.  Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology , 2010, Remote. Sens..

[287]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[288]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[289]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[290]  Irena Hajnsek,et al.  Retrieval of agricultural crop height from space: A comparison of SAR techniques , 2016 .

[291]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[292]  Wout Verhoef,et al.  The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8 , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[293]  Thomas J. Jackson,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[294]  M. Rodell,et al.  Multi-sensor assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for soil moisture and shallow groundwater estimation , 2019, Remote Sensing of Environment.

[295]  N. Silleos,et al.  The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction , 1993 .

[296]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[297]  Gustau Camps-Valls,et al.  Synergistic integration of optical and microwave satellite data for crop yield estimation , 2019, Remote sensing of environment.

[298]  Joseph A. Santanello,et al.  Irrigation Signals Detected From SMAP Soil Moisture Retrievals , 2017 .

[299]  Yang Yang,et al.  Remote Sensing of Irrigated Agriculture: Opportunities and Challenges , 2010, Remote. Sens..

[300]  Sébastien Lambot,et al.  Estimating surface-soil moisture for retrieving maize leaf-area index from SAR data , 2011 .

[301]  B. Ma,et al.  Early prediction of soybean yield from canopy reflectance measurements , 2001 .

[302]  Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response , 2019, Hydrology and Earth System Sciences.

[303]  A. Porporato,et al.  Ecohydrology of Agroecosystems: Quantitative Approaches Towards Sustainable Irrigation , 2014, Bulletin of Mathematical Biology.

[304]  Olivier Merlin,et al.  Towards a surface soil moisture product at high spatio-temporal resolution: temporally-interpolated spatially-disaggregated SMOS data , 2017 .

[305]  Jiali Shang,et al.  Assessment of red-edge vegetation indices for crop leaf area index estimation , 2019, Remote Sensing of Environment.

[306]  O. Mutanga,et al.  Using WorldView-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests , 2013 .

[307]  C. Wiegand,et al.  Use of spectral vegetation indices to infer leaf area, evapotranspiration and yield. I. Rationale. , 1990 .

[308]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[309]  W. Verhoef,et al.  FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy , 2016 .

[310]  Mutlu Ozdogan,et al.  A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US , 2008 .

[311]  F. Ulaby,et al.  Microwave radar response to canopy moisture, leaf-area index, and dry weight of wheat, corn, and sorghum☆ , 1981 .

[312]  P. M. Berry,et al.  Quantifying lodging-induced yield losses in oilseed rape , 2017 .

[313]  A. Lorenc,et al.  The Met Office global four‐dimensional variational data assimilation scheme , 2007 .

[314]  Amine Merzouki,et al.  Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data , 2015 .

[315]  A. Huete,et al.  Development of a two-band enhanced vegetation index without a blue band , 2008 .

[316]  Luca Brocca,et al.  Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region , 2019, Remote Sensing of Environment.

[317]  Yuan Zhang,et al.  Characterizing L-Band Scattering of Paddy Rice in Southeast China With Radiative Transfer Model and Multitemporal ALOS/PALSAR Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[318]  D. Raes,et al.  AquaCrop — The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description , 2009 .

[319]  Obi Reddy P. Gangalakunta,et al.  Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium , 2009 .

[320]  Muddu Sekhar,et al.  Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India , 2018, Remote. Sens..

[321]  Matthew O. Jones,et al.  Satellite passive microwave remote sensing for monitoring global land surface phenology , 2011 .

[322]  Dong Liang,et al.  New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[323]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[324]  M. F. Gross,et al.  Continental scale variability in vegetation reflectance and its relationship to canopy morphology , 1988 .

[325]  V. Simonneaux,et al.  The use of high‐resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco , 2008 .

[326]  W. Mauser,et al.  A global approach to estimate irrigated areas – a comparison between different data and statistics , 2018 .

[327]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[328]  E. Oerke Crop losses to pests , 2005, The Journal of Agricultural Science.

[329]  M. Piles,et al.  Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations , 2019 .

[330]  Zhongbo Yu,et al.  Evaluation of hydroclimatic variables for maize yield estimation using crop model and remotely sensed data assimilation , 2019, Stochastic Environmental Research and Risk Assessment.

[331]  Thor-Bjørn Ottosen,et al.  Remote sensing of cropping practice in Northern Italy using time-series from Sentinel-2 , 2019, Comput. Electron. Agric..

[332]  Curtis E. Woodcock,et al.  Changes in Summer Irrigated Crop Area and Water Use in Southeastern Turkey from 1993 to 2002: Implications for Current and Future Water Resources , 2006 .

[333]  Naota Hanasaki,et al.  A reservoir operation scheme for global river routing models , 2006 .

[334]  Ramesh P. Singh,et al.  Crop yield estimation model for Iowa using remote sensing and surface parameters , 2006 .

[335]  Gunter Menz,et al.  Multi-temporal wheat disease detection by multi-spectral remote sensing , 2007, Precision Agriculture.

[336]  T. Mushore,et al.  Examining the prospects of sentinel-2 multispectral data in detecting and mapping maize streak virus severity in smallholder Ofcolaco farms, South Africa , 2019, Geocarto International.

[337]  W. Wagner,et al.  A new method for rainfall estimation through soil moisture observations , 2013 .

[338]  T. Hsiao Plant Responses to Water Stress , 1973 .

[339]  R. Ji,et al.  Use of MODIS data to monitor the oriental migratory locust plague , 2004 .

[340]  D. Lobell,et al.  Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence , 2016, Global change biology.

[341]  Jan Jacobi,et al.  CLASSIFICATION OF WEED PATCHES IN QUICKBIRD IMAGES: VERIFICATION BY GROUND TRUTH DATA , 2006 .

[342]  L. Kumar,et al.  A review of data assimilation of remote sensing and crop models , 2018 .

[343]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[344]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[345]  F. Kogan Application of vegetation index and brightness temperature for drought detection , 1995 .

[346]  Y. Kerr,et al.  Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia , 2016 .

[347]  Albert J. Peters,et al.  Remote Sensing of Broom Snakeweed (Gutierrezia Sarothrae) with Noaa-10 Spectral Image Processing , 1992, Weed Technology.

[348]  Dara Entekhabi,et al.  Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations , 2016 .

[349]  H. Sinoquet,et al.  An overview of the crop model STICS , 2003 .

[350]  H.W.J. van Kasteren,et al.  Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth , 1990 .

[351]  Seungtaek Jeong,et al.  Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover , 2012 .

[352]  Wade T. Crow,et al.  Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements , 2017 .

[353]  James Rowland,et al.  Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI , 2014 .

[354]  Onisimo Mutanga,et al.  Detection and mapping the spatial distribution of bracken fern weeds using the Landsat 8 OLI new generation sensor , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[355]  M. Sibanda,et al.  An assessment of groundwater use in irrigated agriculture using multi-spectral remote sensing , 2020 .

[356]  J. Dozier,et al.  Inroads of remote sensing into hydrologic science during the WRR era , 2015 .

[357]  E. Small,et al.  Soil Moisture Data Assimilation to Estimate Irrigation Water Use , 2019, Journal of advances in modeling earth systems.

[358]  Gary E. Varvel,et al.  Use of Remote-Sensing Imagery to Estimate Corn Grain Yield , 2001 .

[359]  Q. Qin,et al.  VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing , 2013 .

[360]  Wim G.M. Bastiaanssen,et al.  Remote sensing for irrigated agriculture: examples from research and possible applications , 2000 .

[361]  Nicholas C. Coops,et al.  Integrating remotely sensed and ancillary data sources to characterize a mountain pine beetle infestation , 2006 .

[362]  Peter Somkuti,et al.  A new space-borne perspective of crop productivity variations over the US Corn Belt , 2020, Agricultural and Forest Meteorology.

[363]  Chris Funk,et al.  Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe , 2009 .

[364]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[365]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[366]  Byun-Woo Lee,et al.  Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression , 2006 .

[367]  D. Tilman,et al.  Global food demand and the sustainable intensification of agriculture , 2011, Proceedings of the National Academy of Sciences.

[368]  I. El-Magd,et al.  Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification , 2003 .

[369]  Javier Pacheco-Labrador,et al.  Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits , 2019 .

[370]  A. Ito,et al.  Global dependence of field‐observed leaf area index in woody species on climate: a systematic review , 2014 .

[371]  John S. Kimball,et al.  Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[372]  Alex J. Cannon,et al.  Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods , 2016 .

[373]  Nataliia Kussul,et al.  Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model , 2017 .

[374]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[375]  R. H. Haas,et al.  Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands , 1993 .

[376]  Bhaskar J. Choudhury,et al.  Relative sensitivity of normalized difference vegetation Index (NDVI) and microwave polarization difference Index (MPDI) for vegetation and desertification monitoring , 1988 .

[377]  Bingfang Wu,et al.  Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia , 2019, Remote. Sens..

[378]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[379]  Compton J. Tucker,et al.  Monitoring vegetation using Nimbus-7 scanning multichannel microwave radiometer's data , 1987 .

[380]  Changsheng Li,et al.  Mapping paddy rice agriculture in southern China using multi-temporal MODIS images , 2005 .

[381]  L. Pendergast,et al.  Impact of oxygation on soil respiration, yield and water use efficiency of three crop species , 2011 .

[382]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[383]  John R. Williams,et al.  The EPIC crop growth model , 1989 .

[384]  Tim R. McVicar,et al.  Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability , 2014 .

[385]  Prasad S. Thenkabail,et al.  Landsat-5 Thematic Mapper models of soybean and corn crop characteristics , 1994 .

[386]  Craig S. T. Daughtry,et al.  Differences in vegetation indices for simulated Landsat-5 MSS and TM, NOAA-9 AVHRR, and SPOT-1 sensor systems , 1987 .

[387]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .