Synthesis, structure, and alkyne insertion of a mixed-sandwich zirconacarborane alkyl

A neutral mixed-sandwich zirconacarborane alkyl [η1:σ:η5-{MeN(CH2)CH2CH2}C2B9H10]Zr(η5-Cp′′) (Cp′′ = 1,3-(Me3Si)2C5H3) was prepared via methane elimination reaction of 7-Me2N(H)CH2CH2-7,8-C2B9H11 with (η5-Cp′′)ZrMe3, followed by an intramolecular C–H activation. It reacted with internal alkynes and trimethylsilylacetylene to give the Zr–C σ bond mono-insertion products; however, the terminal alkyne 3,3-dimethyl-1-butyne underwent an acid–base reaction to produce a zirconium alkynyl complex. Both electronic and steric factors affected the regioselectivity of the insertion process. The results showed that the coordination of the sidearm nitrogen atom could enhance the thermal stability of the resulting zirconacarborane alkyl, and on the other hand, lowered the Lewis acidity of the Zr atom, leading to relatively poor reactivity. All complexes were fully characterized by NMR spectroscopy and elemental analyses. Most of them were further confirmed by single-crystal X-ray analyses.

[1]  Yangjian Quan,et al.  Transition-metal-mediated three-component cascade cyclization: selective cage B-C(sp2) coupling of carborane with aromatics and synthesis of carborane-fused tricyclics. , 2014, Journal of the American Chemical Society.

[2]  Yangjian Quan,et al.  Three-component [2+2+1] cross-cyclotrimerization of carboryne, unactivated alkene, and trimethylsilylalkyne co-mediated by Zr and Ni. , 2013, Journal of the American Chemical Society.

[3]  Li Xiang,et al.  Reaction of [η(1):η(5)-(Me2NCH2CH2)C2B9H10]TaMe3 with aryl isonitriles: tantallacarborane-mediated facile cleavage of C-N multiple bonds. , 2013, Chemical communications.

[4]  Fabian G. Schröder,et al.  Deprotonated P-ylides As Templates for Novel Cyclopentadienyl Phosphonioalkyl, -alkylidene, and -alkylidyne (CpPC) Constrained-Geometry Complexes , 2013 .

[5]  Yue-Peng Cai,et al.  Synthesis, structural characterization, and reactivity of Group 4 metallacarboranes bearing the ligand [H2C(C5Me4)(C2B9H10)]3-. , 2011, Chemistry, an Asian journal.

[6]  G. Bellachioma,et al.  Synthesis, Characterization, Interionic Structure, and Self-Aggregation Tendency of Zirconaaziridinium Salts Bearing Long Alkyl Chains , 2011 .

[7]  Zuowei Xie,et al.  Palladium/nickel-cocatalyzed cycloaddition of 1,3-dehydro-o-carborane with alkynes. Facile synthesis of C,B-substituted carboranes. , 2010, Journal of the American Chemical Society.

[8]  M. A. Antunes,et al.  Structure and Reactivity of Neutral and Cationic trans-N,N′-Dibenzylcyclam Zirconium Alkyl Complexes , 2010 .

[9]  Hoi-Shan Chan,et al.  Reaction of Zirconocene−Carboryne Precursor with Alkynes: An Efficient Route to Zirconacyclopentenes Incorporating a Carboranyl Unit , 2009 .

[10]  P. V. van Leeuwen,et al.  Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions. , 2009, Chemical Society reviews.

[11]  Samuel A. Johnson,et al.  Mesityl alkyne substituents for control of regiochemistry and reversibility in zirconocene couplings: new synthetic strategies for unsymmetrical zirconacyclopentadienes and conjugated polymers. , 2009, Journal of the American Chemical Society.

[12]  Hoi-Shan Chan,et al.  Synthesis, structure, and reactivity of zirconacyclopentene incorporating a carboranyl unit. , 2009, Journal of the American Chemical Society.

[13]  Zuowei Xie,et al.  Nickel-mediated three-component cycloaddition reaction of carboryne, alkenes, and alkynes. , 2009, Journal of the American Chemical Society.

[14]  T. Roisnel,et al.  Group 4 Metal Complexes of Fluorous (Di)Alkoxide-(Di)Imino Ligands: Synthesis, Structure, Olefin Polymerization Catalysis, and Decomposition Pathways , 2009 .

[15]  Dongmei Liu,et al.  Synthesis, Structure, and Reactivity of Group 4 Metallacarboranes Bearing the Ligand [Me2C(C9H6)(C2B9H10)]3− , 2008 .

[16]  Dongmei Liu,et al.  Synthesis, Structural Characterization, and Reactivity of Group 4 Metallacarboranes Containing the Ligand [Me2C(C5H4)(C2B9H10)]3− , 2008 .

[17]  J. Montchamp,et al.  Chapter 5. Zirconocenes , 2008 .

[18]  A. Hoveyda,et al.  Chiral Titanocenes and Zirconocenes in Synthesis , 2008 .

[19]  Y. Kissin Alkene Polymerization Reactions with Transition Metal Catalysts , 2008 .

[20]  T. Tilley,et al.  Octa- and Nonamethylfluorenyl Complexes of Zr(II), Zr(IV), and Hf(IV). Investigation of Steric and Electronic Effects , 2008 .

[21]  Minserk Cheong,et al.  Synthesis, characterization, and reactivity of new types of constrained geometry group 4 metal complexes derived from picolyl-substituted dicarbollide ligand systems , 2007 .

[22]  Minserk Cheong,et al.  New Types of Constrained Geometry Group 4 Metal Complexes Derived from the Aminomethyldicarbollyl Ligand System: Synthesis and Structural Characterization of Mono-dicarbollylamino and Bis-dicarbollylamino Group 4 Metal Complexes , 2007 .

[23]  S. Grimme,et al.  Stereo-electronic interaction in complex molecules: cyclopropyl conjugation with Lewis acidic centres across connecting carbon-carbon triple bonds. , 2006, Chemical communications.

[24]  B. T. King,et al.  Four Homologous Zirconium 2,2‘-Biphenyldiyls: Synthesis, Structure, and Reactivity , 2006 .

[25]  L. Deng,et al.  Nickel-mediated regioselective [2 + 2 + 2] cycloaddition of carboryne with alkynes. , 2006, Journal of the American Chemical Society.

[26]  C. Qian,et al.  Synthesis, Structure, and Olefin Polymerization Behavior of Constrained-Geometry Group 4 Metallacarboranes Incorporating Imido-Dicarbollyl Ligands , 2006 .

[27]  Zuowei Xie Group 4 metallocenes incorporating constrained-geometry carboranyl ligands , 2006 .

[28]  Baiquan Wang Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities , 2006 .

[29]  Hoi-Shan Chan,et al.  Highly Electrophilic Half-Sandwich Group 4 Metallacarborane Alkyls. C-H/C-O Activation and Alkyne Insertion Reactions at Neutral Metal Complexes , 2005 .

[30]  Hoi-Shan Chan,et al.  Synthesis and structural characterization of mono- and bisfunctional o-carboranes. , 2005, Dalton transactions.

[31]  K. Carpenter,et al.  Syntheses and catalytic activities of Group 4 metal complexes derived from C (cage) -appended cyclohexyloxocarborane trianion , 2005 .

[32]  Minserk Cheong,et al.  Sterically protected titanium (aminoethyl)dicarbollides : Synthesis of novel constrained-geometry complexes showing an unusual cage B,N-cyclization , 2005 .

[33]  J. Ko,et al.  Novel titanium complexes of a multidentate dicarbollide ligand. Synthesis and structural characterization of a constrained geometry complex. , 2003, Chemical communications.

[34]  P. Chirik,et al.  Alkyl substituent effects on reductive elimination reactions in zirconocene alkyl hydride complexes. Manipulation of the alkyl steric environment allows the synthesis of a zirconocene dinitrogen complex , 2003 .

[35]  P. Sharp,et al.  Cp 2 Zr(η 2 -benzocyclobutadiene)(PMe 3 ), a Rare η 2 -Cyclobutadiene Complex , 2002 .

[36]  R. Waymouth,et al.  2-Arylindene metallocenes: conformationally dynamic catalysts to control the structure and properties of polypropylenes. , 2002, Accounts of chemical research.

[37]  S. Macgregor,et al.  Insertions of unsymmetric alkynes into the metal-carbon bonds of nickelacycles: What determines the regiochemistry? , 2001 .

[38]  J. Won,et al.  Dicarbollide Analogues of the Constrained-Geometry Polymerization Catalyst , 2001 .

[39]  Timothy J. Woodman,et al.  B(C6F5)3 as C6F5 Transfer Agent in Zirconium Chemistry: Borole Sandwich and Borole-Bridged Triple-Decker Complexes , 2001 .

[40]  G. Erker,et al.  Homogeneous single-component betaine Ziegler-Natta catalysts derived from (butadiene)zirconocene precursors. , 2001, Accounts of chemical research.

[41]  V. Young,et al.  Titanium Dicarbollide Complexes. Molecular Structures of (η5-C2B9H11)(C5Me5)TiMe and (η5-C2B9H11)(η5,η1-C5Me4CH2)Ti , 2001 .

[42]  G. Erker,et al.  Addition and Coupling Reactions of Zirconocene Cation Complexes that Contain a Pendant η2-Formaldiminium Side Chain , 2000 .

[43]  J. Reek,et al.  Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. , 2000, Chemical reviews.

[44]  L. Cavallo,et al.  Selectivity in propene polymerization with metallocene catalysts. , 2000, Chemical reviews.

[45]  V. R. Jensen,et al.  Toward Quantitative Prediction of Stereospecificity of Metallocene-Based Catalysts for alpha-Olefin Polymerization. , 2000, Chemical reviews.

[46]  G. Coates Precise control of polyolefin stereochemistry using single-site metal catalysts. , 2000, Chemical reviews.

[47]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[48]  V. Burlakov,et al.  What do titano- and zirconocenes do with diynes and polyynes? , 2000, Accounts of chemical research.

[49]  G. Erker,et al.  Evidence for α-Nitrogen Participation in the Internal C−H Activation Reaction at ((Dimethylamino)methyl)cyclopentadienyl-Derived Methylzirconocene Cations , 1999 .

[50]  U. Thewalt,et al.  Synthesis and crystal structure of a zirconium(III) diacetylide tweezer complex: [(η5-C5HMe4)2Zr(η1-CCSiMe3)2]-K+ , 1998 .

[51]  V. Young,et al.  Formation of novel ansa-carborane-alkoxide complexes by carbonylation of (C5Me5)(η5-C2B9H 11)TiMe , 1998 .

[52]  R. F. Jordan,et al.  CATALYTIC DIMERIZATION OF TERMINAL ALKYNES BY A HAFNIUM CARBORANYL COMPLEX. A SELF-CORRECTING CATALYST , 1997 .

[53]  D. J. Crowther,et al.  Synthesis, Structure, and Reactivity of a Novel Hafnium Carboranyl Hydride Complex , 1997 .

[54]  R. Grubbs,et al.  α-Agostic Interactions and Olefin Insertion in Metallocene Polymerization Catalysts , 1996 .

[55]  D. J. Crowther,et al.  EARLY METAL DICARBOLLIDE CHEMISTRY. CHARACTERIZATION OF AN UNUSUAL BRIDGING C2B9H112- BONDING MODE IN (C5ME5)2(C2B9H11)2HF2ME2 , 1995 .

[56]  T. Tilley,et al.  Efficient, Zirconocene-Mediated Cyclotrimerization and Cyclotetramerization of Me3SiC.tplbond.CC6H4C6H4C.tplbond.CSiMe3 to Unsaturated Macrocycles , 1995 .

[57]  R. F. Jordan,et al.  EARLY METAL CARBORANE CHEMISTRY. GENERATION AND REACTIVITY OF (C5ME5)(ETA 5-C2B9H11)TIME , 1995 .

[58]  M. Hursthouse,et al.  Synthesis of Base-Free Cationic Zirconium Methyl and Benzyl Complexes. The Crystal and Molecular Structure of {C5H3(SiMe3)2-1,3}2ZrMe(.mu.-Me)B(C6F5)3 , 1994 .

[59]  R. L. Halterman Synthesis and Applications of Chiral Cyclopentadienylmetal Complexes , 1992 .

[60]  D. J. Crowther,et al.  Group 4 metal dicarbollide chemistry. Synthesis, structures, and reactivity of electrophilic alkyl complexes (Cp*)(C2B9H11)M(R), M = Hf, Zr , 1991 .

[61]  R. F. Jordan,et al.  Insertion chemistry of Cp2Zr(.eta.2-C,N-CH2{6-Me-pyrid-2-yl})+: facile zirconium-mediated functionalization of methyl carbon-hydrogen bonds of 2,6-lutidine , 1991 .

[62]  R. F. Jordan,et al.  Electronic control of regioselectivity in coupling reactions of SiMe3-substituted alkenes with Cp2Zr(*2(N,C2)-6-phenylpyridyl)(THF)+ , 1990 .

[63]  S. Buchwald,et al.  Zirconocene complexes of imines. General synthesis, structure, reactivity, and in situ generation to prepare geometrically pure allylic amines , 1989 .

[64]  W. L. Jorgensen,et al.  Ab initio investigations of the .beta.-silicon effect on alkyl and cyclopropyl carbenium ions and radicals , 1989 .

[65]  K. Morokuma,et al.  SiC agostic interaction with Ti: origin of alkenyl group distortion in Ti(C(SiH2CH3)=CH2)X2+. An ab initio MO study , 1988 .

[66]  J. B. Lambert,et al.  Stabilization of positive charge by .beta.-silicon , 1987 .

[67]  J. L. Petersen,et al.  Reactivity of substituted acetylenes with [(.eta.5-C5H4CH3)2ZrH(.mu.-H)]2. Observation of zirconacyclopentadiene formation and acetylene hydrogenation , 1985 .

[68]  Scott G. Wierschke,et al.  Magnitude and origin of the .beta.-silicon effect on carbenium ions , 1985 .

[69]  N. A. Clinton,et al.  Vertical stabilization of cations by neighboring .sigma. bonds. General considerations , 1971 .