Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

[1]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[2]  Theory of the scanning tunneling microscope , 1985 .

[3]  Stroscio,et al.  Electronic structure of the Si(111)2 x 1 surface by scanning-tunneling microscopy. , 1986, Physical review letters.

[4]  H. van Kempen,et al.  Scanning tunnelling microscopy , 1992 .

[5]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[6]  Wang Yao,et al.  Quantum size effects on the work function of metallic thin film nanostructures , 2010, Proceedings of the National Academy of Sciences.

[7]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[8]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[9]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[10]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[11]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[12]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[13]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[14]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[15]  Wang Yao,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[16]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[17]  F. M. Peeters,et al.  Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 , 2013, 1303.5861.

[18]  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[19]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[20]  M. Terrones,et al.  Bilayers of transition metal dichalcogenides: Different stackings and heterostructures , 2014 .

[21]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[22]  X. Qiao,et al.  Photoluminescence properties and exciton dynamics in monolayer WSe2 , 2014 .

[23]  Su-Yang Xu,et al.  Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2 , 2013, Nature Communications.

[24]  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[25]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[26]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[27]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[28]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[29]  Andrew T. S. Wee,et al.  Bandgap tunability at single-layer molybdenum disulphide grain boundaries , 2015, Nature Communications.

[30]  S. Louie,et al.  Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures , 2015, Nano letters.

[31]  Xiaodong Xu,et al.  Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. , 2015, Chemical Society reviews.

[32]  William J. Kaiser,et al.  Scanning Tunneling Microscopy , 2019, CIRP Encyclopedia of Production Engineering.