On the Synthesis of Guitar Plucks

Summary Severa ld ifferent approaches are described to the problem of synthesising the pluck response of a guitar, starting from information about string properties and the input admittance at the bridge of the guitar. Synthesis can be carried out in the frequency domain, the time domain, or via modal superposition. Within these categories there are further options. A range of methods is developed and implemented, and their performance on a particular test case compared. The two most successful methods are found to be modal synthesis using the first-order method, and frequency-domain synthesis. Of the two, frequency domain synthesis proves to be faster. A significant conclusion is that the coupled string/body modes of a normal classical guitar do not show “veering” behaviour except at low frequencies, so that it is important to use a synthesis method which incorporates fully the effect of string damping: methods based on first finding undamped modes give poor results.

[1]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .

[2]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J Woodhouse,et al.  ON THE PLAYABILITY OF VIOLINS. II: MINIMUN BOW FORCE AND TRANSIENTS , 1993 .

[5]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[6]  Eric E. Ungar,et al.  Mechanical Vibration Analysis and Computation , 1989 .

[7]  John T. Scott,et al.  Fundamentals of musical acoustics , 1976 .

[8]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[9]  Jim Woodhouse,et al.  The physics of the violin , 1986 .

[10]  Antoine Chaigne,et al.  Time-domain simulation of a guitar: model and method. , 2003, The Journal of the Acoustical Society of America.

[11]  John C. Schelleng Erratum: The Violin as a Circuit [J. Acoust. Soc. Am. 35, 326–338 (1963)] , 1963 .

[12]  J. C. Schelleng,et al.  The Violin as a Circuit , 1963 .

[13]  John C. Schelleng The Bowed String , 1967 .

[15]  C. D. Mote,et al.  Comments on curve veering in eigenvalue problems , 1986 .

[16]  J. Woodhouse,et al.  On the playability of violins. I: reflection functions , 1993 .

[17]  Gabriel Weinreich,et al.  Coupled piano strings , 1977 .

[18]  Cumhur Erkut,et al.  Methods for Modeling Realistic Playing in Acoustic Guitar Synthesis , 2001, Computer Music Journal.

[19]  Sondipon Adhikari,et al.  Quantification of non-viscous damping in discrete linear systems , 2003 .

[20]  G. Bissinger Modal analysis of a violin octet. , 2003, The Journal of the Acoustical Society of America.

[21]  Jim Woodhouse,et al.  INFLUENCE OF GEOMETRY ON LINEAR DAMPING , 1978 .

[22]  Schumacher,et al.  Reconstruction of bowing point friction force in a bowed string , 2000, The Journal of the Acoustical Society of America.

[23]  Eugen J. Skudrzyk,et al.  Simple and Complex Vibratory Systems , 1969 .

[24]  Ove Christensen,et al.  Simple model for low-frequency guitar function , 1980 .

[25]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[26]  Jim Woodhouse,et al.  Torsional Behaviour of Cello Strings , 1999 .

[27]  J. Woodhouse,et al.  On measuring the elastic and damping constants of orthotropic sheet materials , 1988 .

[28]  L. Rayleigh,et al.  The theory of sound , 1894 .