Generation of an arbitrary four-photon polarization-entangled decoherence-free state with cross-Kerr nonlinearity

We present a new scheme to provide an arbitrary four-photon polarization-entangled state, which enables the encoding of single logical qubit information into a four-qubit decoherence-free subspace robustly against collective decoherence. With the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a polarization entanglement gate are inserted into the circuit, where the X-quadrature homodyne measurement is properly performed. According to the outcomes of homodyne measurement in the spatial entanglement process, some swap gates are inserted into the corresponding paths of the photons to swap their spatial modes. Apart from Kerr media, some basic linear optical elements are necessary, which make it feasible with current experimental techniques.

[1]  Ting Gao,et al.  Exploration of photon-number entangled states using weak nonlinearities. , 2015, Optics express.

[2]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[3]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[4]  Li Dong,et al.  Nearly deterministic controlled-not gate with weak cross-kerr nonlinearities , 2012, Quantum Inf. Comput..

[5]  Kyu-Hwang Yeon,et al.  Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. , 2011, Optics express.

[6]  Jian-Wei Pan,et al.  Experimental realization of entanglement concentration and a quantum repeater. , 2003, Physical review letters.

[7]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[8]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[9]  Yun Deng,et al.  Generation of hybrid four-qubit entangled decoherence-free states assisted by the cavity-QED system , 2016 .

[10]  Jie Song,et al.  Effective protocol for preparation of four-photon polarization-entangled decoherence-free states with cross-Kerr nonlinearity , 2013 .

[11]  Ting Gao,et al.  Two local observables are sufficient to characterize maximally entangled states of N qubits , 2010, 1011.0987.

[12]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[13]  Io-Chun Hoi,et al.  Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. , 2012, Physical review letters.

[14]  Guang-Can Guo,et al.  Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions , 2006 .

[15]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  Xiao-Ming Xiu,et al.  Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities , 2016 .

[17]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[18]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[19]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[20]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[21]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[22]  Ting Gao,et al.  Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales , 2013 .

[23]  Guilu Long,et al.  Protecting geometric gates by dynamical decoupling , 2014 .

[24]  Christian Kurtsiefer,et al.  Decoherence-free quantum information processing with four-photon entangled states. , 2004, Physical review letters.

[25]  P. Kwiat,et al.  Experimental investigation of a two-qubit decoherence-free subspace. , 2004, Physical review letters.

[26]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[27]  Fuguo Deng Optimal nonlocal multipartite entanglement concentration based on projection measurements , 2011, 1112.1355.

[28]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[29]  Barry C. Sanders,et al.  Entanglement creation with negative index metamaterials , 2012, 1205.4506.

[30]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[31]  Bing He,et al.  Highly Efficient Processing of Multi-photon States , 2014, Scientific Reports.

[32]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Lan Zhou,et al.  Two-step complete polarization logic Bell-state analysis , 2014, Scientific Reports.

[34]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[35]  Li Dong,et al.  Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem. , 2016, Optics letters.

[36]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[37]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[38]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[39]  Masahiro Takeoka,et al.  Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector , 2010, 1002.0232.

[40]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[41]  T. Gao,et al.  Exploration of multiphoton entangled states by using weak nonlinearities , 2015, Scientific Reports.

[42]  Jian Li,et al.  Quantum control gates with weak cross-Kerr nonlinearity , 2008, 0811.3364.