Modeling turbulent flow with implicit LES

Implicit large eddy simulation (ILES) is a methodology for modeling high Reynolds' number flows that combine computational efficiency and ease of implementation with predictive calculations and flexible application. Although ILES has been used for more than 15 years, it is only recently that significant effort has gone into providing a physical rationale that speaks to its capabilities and its limitations. In this article, we will present new theoretical results aimed toward building a justification for ILES. We will also compare ILES simulations of complex flows with data to illustrate practical aspects of the validation of our approach.

[1]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[2]  George Em Karniadakis,et al.  Alternative LES and Hybrid RANS/LES for Turbulent Flows , 2002 .

[3]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[4]  L. Margolin,et al.  A rationale for implicit turbulence modelling , 2001 .

[5]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[6]  D. Drikakis Advances in turbulent flow computations using high-resolution methods , 2003 .

[7]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[8]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[9]  C. W. Hirt Heuristic stability theory for finite-difference equations☆ , 1968 .

[10]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[11]  F. Grinstein,et al.  Coherent-structure dynamics in spatially developing square jets , 1992 .

[12]  W. Y. Chen,et al.  Measurements of spectral energy transfer in grid turbulence , 1969, Journal of Fluid Mechanics.

[13]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[14]  C. W. Hirt Computer Studies of Time‐Dependent Turbulent Flows , 1969 .

[15]  L. Margolin,et al.  From Numerical Analysis to Implicit Subgrid Turbulence Modeling (Invited) , 2003 .

[16]  J. Lumley Whither Turbulence? Turbulence at the Crossroads , 1990 .

[17]  Len G. Margolin,et al.  Antidiffusive Velocities for Multipass Donor Cell Advection , 1998, SIAM J. Sci. Comput..

[18]  Fernando F. Grinstein,et al.  Self-induced vortex ring dynamics in subsonic rectangular jets , 1995 .

[19]  Jay P. Boris,et al.  On large eddy simulation using subgrid turbulence models Comment 1 , 1990 .

[20]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[21]  Paul Linden,et al.  Molecular mixing in Rayleigh–Taylor instability , 1994, Journal of Fluid Mechanics.

[22]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[23]  D. Drikakis,et al.  Large eddy simulation of compressible turbulence using high‐resolution methods , 2005 .

[24]  O. M. Belotserkovskii Turbulence and Instabilities , 2000 .

[25]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[26]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[27]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[28]  L. Margolin,et al.  The design and construction of implicit LES models , 2005 .

[29]  Paul R. Woodward,et al.  Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows , 1994 .

[30]  F. Grinstein,et al.  Recent Progress on MILES for High Reynolds Number Flows , 2002 .

[31]  Fernando F. Grinstein,et al.  Dynamics of coherent structures and transition to turbulence in free square jets , 1996 .

[32]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[33]  William J. Rider,et al.  Combining high‐order accuracy with non‐oscillatory methods through monotonicity preservation , 2005 .

[34]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[35]  Len G. Margolin,et al.  Implicit Turbulence Modeling for High Reynolds Number Flows , 2001 .

[36]  W. Cabot,et al.  A high-wavenumber viscosity for high-resolution numerical methods , 2004 .

[37]  R. LeVeque Numerical methods for conservation laws , 1990 .

[38]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[39]  Christian Tenaud,et al.  High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .

[40]  Jackson R. Herring,et al.  Development of enstrophy and spectra in numerical turbulence , 1993 .

[41]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[42]  L. F. G. Simmons,et al.  An experimental determination of the spectrum of turbulence - With an appendix: method of deducing F(n) from the measurements. , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[44]  William J. Rider,et al.  Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations , 2007, J. Comput. Phys..

[45]  Piotr K. Smolarkiewicz,et al.  VLES modelling of geophysical fluids with nonoscillatory forward‐in‐time schemes , 2002 .

[46]  Jay P. Boris,et al.  Computing Turbulent Shear Flows — A Convenient Conspiracy , 1993 .

[47]  Joseph Smagorjnsky,et al.  The Beginnings of Numerical Weather Prediction and General Circulation Modeling: Early Recollections , 1983 .

[48]  W. Rider,et al.  High-Resolution Methods for Incompressible and Low-Speed Flows , 2004 .

[49]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[50]  F. Grinstein,et al.  Monotonically integrated large eddy simulation of free shear flows , 1999 .

[51]  Ephraim Gutmark,et al.  Near field dynamics of subsonic free square jets. A computational and experimental study , 1995 .

[52]  Javier Jiménez,et al.  The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.

[53]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[54]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[55]  Marshal L. Merriam,et al.  Smoothing and the second law , 1987 .

[56]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[57]  H. Huynh Accurate upwind methods for the Euler equations , 1995 .

[58]  William J. Rider,et al.  Simple modifications of monotonicity-preserving limiters , 2001 .

[59]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .