Comparison of optimization methods for model predictive control: An application to a compressed air energy storage system

This thesis compares different linear and nonlinear optimization methods for model predictive control of energy storage systems. The methods are applied to a compressed air energy storage system. Model predictive control is used to minimize operational costs covering a given 24-hour air demand using a time-sensitive electricity price as an incentive. The experiments are performed for several scenarios with variations in demand, electricity price, optimization timestep size and forecast quality.

[1]  Paul Cooper,et al.  Hybrid Model Predictive Control of a Residential HVAC System with PVT Energy Generation and PCM Thermal Storage , 2015 .

[2]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[3]  Hartmut Schmeck,et al.  Adaptive building energy management with multiple commodities and flexible evolutionary optimization , 2016 .

[4]  D. Wolf,et al.  Adiabatic Compressed Air Energy Storage co-located with wind energy—multifunctional storage commitment optimization for the German market using GOMES , 2012 .

[5]  Marija D. Ilic,et al.  Model predictive dispatch in electric energy systems with intermittent resources , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[6]  Evangelos Rikos,et al.  Use of model predictive control for experimental microgrid optimization , 2014 .

[7]  Hao Shen,et al.  Optimal water heater control in smart home environments , 2016, 2016 IEEE International Energy Conference (ENERGYCON).

[8]  Francesco Borrelli,et al.  Model Predictive Control of thermal energy storage in building cooling systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[9]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[10]  Antonio Piacentino,et al.  Energy saving in airports by trigeneration. Part II: Short and long term planning for the Malpensa 2000 CHCP plant , 2006 .

[11]  Shahram Jadid,et al.  Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS , 2015 .

[12]  Nikos D. Hatziargyriou,et al.  A review of power distribution planning in the modern power systems era: Models, methods and future research , 2015 .

[13]  Consolación Gil,et al.  Optimization methods applied to renewable and sustainable energy: A review , 2011 .

[14]  P. Kriett,et al.  Optimal control of a residential microgrid , 2012 .

[15]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[16]  Farrokh Janabi-Sharifi,et al.  Theory and applications of HVAC control systems – A review of model predictive control (MPC) , 2014 .

[17]  Damien Ernst,et al.  Using approximate dynamic programming for estimating the revenues of a hydrogen-based high-capacity storage device , 2014, 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

[18]  Richard A. Buswell,et al.  A simulation and optimisation study: Towards a decentralised microgrid, using real world fluctuation data , 2012 .

[19]  Ramesh C. Bansal,et al.  International Journal of Emerging Electric Power Systems Optimization Methods for Electric Power Systems : An Overview , 2011 .

[20]  Oliver Sawodny,et al.  Combined probabilistic and set-based uncertainties for a stochastic model predictive control of island energy systems , 2016, 2016 American Control Conference (ACC).

[21]  Kankar Bhattacharya,et al.  Optimal Operation of Residential Energy Hubs in Smart Grids , 2012, IEEE Transactions on Smart Grid.

[22]  Philipp Kuhn Iteratives Modell zur Optimierung von Speicherausbau und -betrieb in einem Stromsystem mit zunehmend fluktuierender Erzeugung , 2012 .

[23]  Alagan Anpalagan,et al.  Optimization classification, algorithms and tools for renewable energy: A review , 2014 .

[24]  Johannes Dorfner,et al.  Open Source Modelling and Optimisation of Energy Infrastructure at Urban Scale , 2016 .

[25]  Y Riffonneau,et al.  Optimal Power Flow Management for Grid Connected PV Systems With Batteries , 2011, IEEE Transactions on Sustainable Energy.

[26]  Andrea Zanella,et al.  Optimal and Compact Control Policies for Energy Storage Units With Single and Multiple Batteries , 2014, IEEE Transactions on Smart Grid.

[27]  Naehyuck Chang,et al.  Optimal control of a grid-connected hybrid electrical energy storage system for homes , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[28]  Luis M. Serra,et al.  Operational strategy and marginal costs in simple trigeneration systems , 2009 .

[29]  M. J. Moran,et al.  Fundamentals of Engineering Thermodynamics , 2014 .

[30]  Gregor P. Henze,et al.  Evaluation of optimal control for active and passive building thermal storage , 2004 .

[31]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[32]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[33]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[34]  Simeng Liu,et al.  Experimental Analysis of Model-Based Predictive Optimal Control for Active and Passive Building Thermal Storage Inventory , 2005 .

[35]  Philip Haves,et al.  Model predictive control for the operation of building cooling systems , 2010, Proceedings of the 2010 American Control Conference.

[36]  Hartmut Schmeck,et al.  Optimization of Operation and Control Strategies for Battery Energy Storage Systems by Evolutionary Algorithms , 2016, EvoApplications.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Hartmut Schmeck,et al.  Customizable Energy Management in Smart Buildings Using Evolutionary Algorithms , 2014, EvoApplications.

[39]  Hartmut Schmeck,et al.  Establishing a hardware-in-the-loop research environment with a hybrid energy storage system , 2016, 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia).

[40]  François Maréchal,et al.  Model-based optimization of distributed and renewable energy systems in buildings , 2016 .

[41]  Yaoyu Li,et al.  Optimal Energy Management of Wind-Battery Hybrid Power System With Two-Scale Dynamic Programming , 2013, IEEE Transactions on Sustainable Energy.

[42]  Zaijun Wu,et al.  Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review , 2014 .

[43]  Adam N. Letchford,et al.  Non-convex mixed-integer nonlinear programming: A survey , 2012 .

[44]  Yong-Hyuk Kim,et al.  Effective scheduling of residential energy storage systems under dynamic pricing , 2016 .

[45]  Carlos Bordons Alba,et al.  Optimal scheduling of grid-connected PV plants with energy storage for integration in the electricity market , 2017 .

[46]  Rodrigo Palma-Behnke,et al.  A Microgrid Energy Management System Based on the Rolling Horizon Strategy , 2013, IEEE Transactions on Smart Grid.

[47]  Barbara Mayer,et al.  A branch and bound approach for building cooling supply control with hybrid model predictive control , 2016 .

[48]  Basil Kouvaritakis,et al.  Model Predictive Control: Classical, Robust and Stochastic , 2015 .

[49]  Josep M. Guerrero,et al.  Computational optimization techniques applied to microgrids planning: A review , 2015 .

[50]  Paul Cooper,et al.  Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage , 2017 .

[51]  E. D. Mehleri,et al.  Model Predictive Control of distributed energy resources , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[52]  D. K. Maly,et al.  Optimal battery energy storage system (BESS) charge scheduling with dynamic programming , 1995 .

[53]  Helen Durand,et al.  A tutorial review of economic model predictive control methods , 2014 .

[54]  Xiaohua Xia,et al.  Optimal dynamic economic dispatch of generation: A review , 2010 .

[55]  Johannes Jungwirth Lastmanagement in Gebäuden , 2015 .

[56]  Rahmat-Allah Hooshmand,et al.  A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems , 2017 .

[57]  Gulgun Kayakutlu,et al.  Optimisation studies on tri‐generation: a review , 2015 .

[58]  Yi Zong,et al.  Application of Model Predictive Control for Active Load Management in a Distributed Power System With High Wind Penetration , 2012, IEEE Transactions on Smart Grid.

[59]  Zita Vale,et al.  Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming , 2010 .

[60]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[61]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[62]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[63]  Behnam Mohammadi-Ivatloo,et al.  Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program , 2017 .

[64]  Peng Xu,et al.  Demand reduction in building energy systems based on economic model predictive control , 2012 .

[65]  J. A. Rossiter,et al.  Model-Based Predictive Control : A Practical Approach , 2017 .

[66]  Evangelos Rikos,et al.  A Model Predictive Control Approach to Microgrid Operation Optimization , 2014, IEEE Transactions on Control Systems Technology.

[67]  Barbara Mayer,et al.  Management of hybrid energy supply systems in buildings using mixed-integer model predictive control , 2015 .

[68]  Yong Tae Yoon,et al.  A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets , 2012 .

[69]  Ryozo Ooka,et al.  A review on optimization techniques for active thermal energy storage control , 2015 .

[70]  Stefano Bracco,et al.  A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators , 2014 .

[71]  W. H. Boyes,et al.  Instrumentation reference book , 2003 .

[72]  Gabriela Hug,et al.  Model predictive control of industrial loads and energy storage for demand response , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[73]  M. Delimar,et al.  Optimal scheduling of a CHP system with energy storage , 2013, 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[74]  Juan C. Vasquez,et al.  Microgrid supervisory controllers and energy management systems: A literature review , 2016 .