Level-2 fuzzy sets and their usefulness in object-oriented database modelling

Abstract In the real world information is, for the most part, available in an imperfect form. Managing this kind of information with classical database systems brings a disadvantageous loss of data semantics along. Therefore, advanced database modelling techniques are necessary. This paper deals with a uniform and advantageous representation of both perfect and imperfect ‘real world’ information in object-oriented databases. An object-oriented data(base) modelling technique, based on the concept ‘level-2 fuzzy set’, is presented. Hereby, the focus is on the semantic definitions of the structural, as well as on the behavioural aspects of the data. It is shown how level-2 fuzzy sets can be used to generalise the concept ‘type’. Since types are generally recognised to be the basic building blocks of object-oriented database models, generalised types can be used as basic notions of fuzzy object-oriented database models. Finally, it is illustrated and discussed how the ODMG data model can be generalised to handle ‘real world’ data in a more advantageous way.

[1]  Antoine Van Schooten Ontwerp en implementatie van een model voor de representatie en manipulatie van onzekerheid en imprecisie in databanken en expert systemen , 1989 .

[2]  M. Mizumoto,et al.  Fuzzy sets and type 2 under algebraic product and algebraic sum , 1981 .

[3]  Adnan Yazici,et al.  Design and Implementation Issues in the Fuzzy Object-Oriented Data Model , 1998, Inf. Sci..

[4]  I. Turksen Type 2 representation and reasoning for CWW , 2002 .

[5]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[6]  Guy De Tré,et al.  The application of generalised constraints to object-oriented database models , 1999, EUSFLAT-ESTYLF Joint Conf..

[7]  Olga Pons,et al.  Dealing with uncertainty and imprecision by means of fuzzy numbers , 1999, Int. J. Approx. Reason..

[8]  Amihai Motro,et al.  Management of uncertainty in database systems , 1995 .

[9]  David J. DeWitt,et al.  The Object-Oriented Database System Manifesto , 1994, Building an Object-Oriented Database System, The Story of O2.

[10]  James F. Baldwin,et al.  A fuzzy relational inference language , 1984 .

[11]  Patrick Bosc,et al.  Fuzzy databases : principles and applications , 1996 .

[12]  Won Kim,et al.  Modern Database Systems: The Object Model, Interoperability, and Beyond , 1995, Modern Database Systems.

[13]  Ronald R. Yager,et al.  An approach to compute default attribute values in fuzzy object oriented data models , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[14]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[15]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[16]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[17]  Adnan Yazici,et al.  Handling complex and uncertain information in the ExIFO and NF2 data models , 1999, IEEE Trans. Fuzzy Syst..

[18]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[19]  Henri Prade,et al.  Fuzzy relational databases: Representational issues and reduction using similarity measures , 1987 .

[20]  G. De Tré An algebra for querying a constraint defined fuzzy and uncertain object-oriented database model , 2001 .

[21]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[22]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[23]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..

[24]  Kwong-Sak Leung,et al.  A Fuzzy Expert Database System , 1989, Data Knowl. Eng..

[25]  Simon Parsons,et al.  Addendum to "Current Approaches to Handling Imperfect Information in Data and Knowledge Bases" , 1996, IEEE Trans. Knowl. Data Eng..

[26]  E. F. Codd,et al.  The Relational Model for Database Management, Version 2 , 1990 .

[27]  B. Buckles,et al.  Modelling class hierarchies in the fuzzy object-oriented data model , 1993 .

[28]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[29]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[30]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[31]  Gottfried Vossen,et al.  Models and languages of object-oriented databases , 1997 .

[32]  B. Buckles,et al.  A fuzzy representation of data for relational databases , 1982 .

[33]  Gloria Bordogna,et al.  Recent Issues on Fuzzy Databases , 2000 .

[34]  Nancy Van Gyseghem,et al.  Imprecision and uncertainty in the UFO database model , 1998 .

[35]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[36]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[37]  Abraham Silberschatz,et al.  Database research faces the information explosion , 1997, CACM.

[38]  Lotfi A. Zadeh,et al.  Fuzzy Logic and Its Application to Approximate Reasoning , 1974, IFIP Congress.

[39]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[40]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[41]  S. Gottwald Set theory for fuzzy sets of higher level , 1979 .

[42]  Jay Earley,et al.  Toward an understanding of data structures , 1971, SIGFIDET '70.

[43]  Rita De Caluwe Fuzzy And Uncertain Object-Oriented Databases: Concepts And Models , 1997 .

[44]  Guy De Tré,et al.  A Generalised Object-Oriented Database Model , 2000 .

[45]  Henri Prade,et al.  Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries , 1984, Inf. Sci..