Electrically tunable absorber based on nonstructured graphene

We demonstrate numerically that a tunable absorber with absorption of 99.94% in the far infrared range can be obtained using a nonstructured graphene. The mechanism originates from a nonstructured graphene film supported on a periodical dielectric array that can show Fermi level modulation periodically and produce plasmonic resonances in the far infrared range. The nonstructured graphene can avoid the unexpected edge effects and does not influence the unique properties of graphene, which will be helpful in practice to achieve the unity absorption and facilitate the development of many related applications.

[1]  A. Lavrinenko,et al.  Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. , 2013, Optics express.

[2]  T.Li,et al.  Optically pumped nanolaser based on two magnetic plasmon resonance modes , 2009, 0903.5385.

[3]  F. J. Garcia-Vidal,et al.  Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons , 2011, 1201.0191.

[4]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[5]  T. Ochiai Spatially periodic modulation of optical conductivity in doped graphene by two-dimensional diffraction grating , 2015 .

[6]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[7]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[8]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[9]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[10]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[11]  Debdeep Jena,et al.  Unique prospects for graphene-based terahertz modulators , 2011 .

[12]  F. Lederer,et al.  A perfect absorber made of a graphene micro-ribbon metamaterial. , 2012, Optics express.

[13]  G. Lozano,et al.  Coherent and broadband enhanced optical absorption in graphene. , 2013, ACS nano.

[14]  Sailing He,et al.  Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. , 2013, Optics express.

[15]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[16]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[17]  Ken Liu,et al.  Coherent perfect absorption and transparency in a nanostructured graphene film. , 2014, Optics express.

[18]  Qianfan Xu,et al.  Excitation of plasmonic waves in graphene by guided-mode resonances. , 2012, ACS nano.

[19]  Weiren Zhu,et al.  Graphene-enabled tunability of optical fishnet metamaterial , 2013 .

[20]  Y. Hao,et al.  Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz , 2014, Scientific Reports.

[21]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[22]  Ken Liu,et al.  Electrically tunable polarizer based on anisotropic absorption of graphene ribbons , 2014, Applied Physics A.

[23]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[24]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[25]  W. Ye,et al.  Metallic nanofilm half-wave plate based on magnetic plasmon resonance. , 2012, Optics letters.

[26]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[27]  Ken Liu,et al.  Electrically controlling the polarizing direction of a graphene polarizer , 2014 .

[28]  J. Lima Electronic structure of a graphene superlattice with a modulated Fermi velocity , 2015, 1504.01282.

[29]  Huili Grace Xing,et al.  Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. , 2012, Nano letters.

[30]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[31]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[32]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[33]  F. Guinea,et al.  Resonant plasmonic effects in periodic graphene antidot arrays , 2012, 1206.2163.

[34]  Jani Kotakoski,et al.  Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects. , 2012, ACS nano.

[35]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[36]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[37]  H. Bağcı,et al.  An ultra-broadband multilayered graphene absorber. , 2013, Optics express.

[38]  Changqing Gu,et al.  A Novel Absorber With Tunable Bandwidth Based on Graphene , 2014, IEEE Antennas and Wireless Propagation Letters.

[39]  Changtao Wang,et al.  Strong enhancement of light absorption and highly directive thermal emission in graphene. , 2013, Optics express.