Spam Filtering Using Statistical Data Compression Models
暂无分享,去创建一个
Blaz Zupan | Gordon V. Cormack | Thomas R. Lynam | Bogdan Filipic | Andrej Bratko | B. Zupan | A. Bratko | G. Cormack | B. Filipič | T. Lynam | Andrej Bratko
[1] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[2] Ian H. Witten,et al. Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..
[3] Jorma Rissanen,et al. Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.
[4] Jorma Rissanen,et al. Complexity of strings in the class of Markov sources , 1986, IEEE Trans. Inf. Theory.
[5] R. Nigel Horspool,et al. Data Compression Using Dynamic Markov Modelling , 1987, Comput. J..
[6] T. Cover,et al. A sandwich proof of the Shannon-McMillan-Breiman theorem , 1988 .
[7] Robert L. Mercer,et al. An Estimate of an Upper Bound for the Entropy of English , 1992, CL.
[8] Paul G. Howard,et al. The design and analysis of efficient lossless data compression systems , 1993 .
[9] Frans M. J. Willems,et al. The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.
[10] John G. Cleary,et al. Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.
[11] Jorma Rissanen,et al. Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.
[12] Andrew McCallum,et al. A comparison of event models for naive bayes text classification , 1998, AAAI 1998.
[13] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[14] Thorsten Joachims,et al. Making large-scale support vector machine learning practical , 1999 .
[15] Simson L. Garfinkel,et al. Stopping Spam , 1998 .
[16] Sergio VerdÂ,et al. The Minimum Description Length Principle in Coding and Modeling , 2000 .
[17] Georgios Paliouras,et al. An evaluation of Naive Bayesian anti-spam filtering , 2000, ArXiv.
[18] Ian H. Witten,et al. Text categorization using compression models , 2000, Proceedings DCC 2000. Data Compression Conference.
[19] William John Teahan,et al. Text classification and segmentation using minimum cross-entropy , 2000, RIAO.
[20] Georgios Paliouras,et al. Stacking Classifiers for Anti-Spam Filtering of E-Mail , 2001, EMNLP.
[21] Lluís Màrquez i Villodre,et al. Boosting Trees for Anti-Spam Email Filtering , 2001, ArXiv.
[22] Vittorio Loreto,et al. Language trees and zipping. , 2002, Physical review letters.
[23] José María Gómez Hidalgo,et al. Evaluating cost-sensitive Unsolicited Bulk Email categorization , 2002, SAC '02.
[24] Gary Robinson,et al. A statistical approach to the spam problem , 2003 .
[25] Karl-Michael Schneider,et al. A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail Filtering , 2003, EACL.
[26] David J. Harper,et al. Using compression based language models for text categorization. , 2003 .
[27] Isidore Rigoutsos,et al. Chung-Kwei: a Pattern-discovery-based System for the Automatic Identification of Unsolicited E-mail Messages (SPAM) , 2004, CEAS.
[28] Konstantin Tretyakov,et al. Machine Learning Techniques in Spam Filtering , 2004 .
[29] Bin Ma,et al. The similarity metric , 2001, IEEE Transactions on Information Theory.
[30] Georgios Paliouras,et al. A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists , 2004, Information Retrieval.
[31] Paul Graham. Hackers and painters - big ideas from the computer age , 2004 .
[32] Georgios Paliouras,et al. Filtron: A Learning-Based Anti-Spam Filter , 2004, CEAS.
[33] Dale Schuurmans,et al. Augmenting Naive Bayes Classifiers with Statistical Language Models , 2004, Information Retrieval.
[34] Eamonn J. Keogh,et al. Towards parameter-free data mining , 2004, KDD.
[35] Peter Grünwald,et al. A tutorial introduction to the minimum description length principle , 2004, ArXiv.
[36] Bogdan Filipic,et al. Spam Filtering Using Character-Level Markov Models: Experiments for the TREC 2005 Spam Track , 2005, TREC.
[37] Jorma Rissanen,et al. An MDL Framework for Data Clustering , 2005 .
[38] Johan Hovold,et al. Naive Bayes spam filtering using word-position-based attributes and length-sensitive classification thresholds , 2005, CEAS.
[39] William S. Yerazunis,et al. CRM114 versus Mr. X: CRM114 Notes for the TREC 2005 Spam Track , 2005, TREC.
[40] Mark Levene,et al. A Suffix Tree Approach to Email Filtering , 2005, ArXiv.
[41] L. A. Breyer. DBACL at the TREC 2005 , 2005, TREC.
[42] Tony Andrew Meyer. A TREC Along the Spam Track with SpamBayes , 2005, TREC.
[43] Bogdan Filipic,et al. Exploiting structural information for semi-structured document categorization , 2006, Inf. Process. Manag..
[44] Carla E. Brodley,et al. Compression and machine learning: a new perspective on feature space vectors , 2006, Data Compression Conference (DCC'06).
[45] Gordon V. Cormack,et al. TREC 2006 Spam Track Overview , 2006, TREC.
[46] Mark Levene,et al. A suffix tree approach to anti-spam email filtering , 2006, Machine Learning.
[47] Georgios Paliouras,et al. Learning to Filter Unsolicited Commercial E-Mail , 2006 .