Resonant levels in bulk thermoelectric semiconductors

Distortions of the electronic density of states (DOS) are a potent mechanism to increase the thermopower of thermoelectric semiconductors, thereby increasing their power factor. We review band-structure engineering approaches that have been used to achieve this, resonant impurity levels, dilute Kondo effects, and hybridization effects in strongly correlated electron systems. These can increase the thermoelectric power of metals and semiconductors through two mechanisms: (1) the added density of states increases the thermopower in a nearly temperature-independent way; (2) resonant scattering results in a strong electron energy filtering effect that increases the thermopower at cryogenic temperatures where the electron–phonon interactions are weaker. Electronic structure calculation results for Tl:PbTe and Ti:PbTe are contrasted and identify the origin of the thermopower enhancement in Tl:PbTe. This leads to a discussion of the conditions for DOS distortions to produce thermopower enhancements and illustrates the existence of an optimal degree of delocalization of the impurity states. The experimentally observed resonant levels in several III–V, II–VI, IV–VI and V2-VI3 compound semiconductor systems are reviewed.

[1]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[2]  A. Saxena,et al.  A search for resonant states from deep levels in GaAs and AlGaAs: Evidence from hall effect studies under pressure , 1996 .

[3]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[4]  A. Mauger,et al.  Magnetic and transport properties of Pb 1-x Mn x Te spin-glass , 1984 .

[5]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[6]  Ludmila I. Ryabova,et al.  Mixed-valence impurities in lead telluride-based solid solutions , 2002 .

[7]  C. M. Thrush,et al.  Lead strontium telluride and lead barium telluride grown by molecular‐beam epitaxy , 1987 .

[8]  C. Herring,et al.  Phonon-Drag Thermomagnetic Effects inn-Type Germanium. I. General Survey , 1958 .

[9]  Joseph P. Heremans,et al.  Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys , 2011 .

[10]  M. Tacke,et al.  MBE of Pb1−xEuxSe for the use in IR devices , 1987 .

[11]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[12]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[13]  E. M. Levin,et al.  Antimony as an amphoteric dopant in lead telluride , 2009 .

[14]  H. Preier Recent advances in lead-chalcogenide diode lasers , 1979 .

[15]  W. A. Steyert,et al.  Localized Magnetic Impurity States In Metals: Some Experimental Relationships , 1968 .

[16]  Inoue,et al.  Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi2-xSnxTe3 single crystals. , 1994, Physical review. B, Condensed matter.

[17]  D. Greig,et al.  Thermoelectric Power of Metals , 1976 .

[18]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[19]  S. Mahanti,et al.  Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe , 2010 .

[20]  J. Heremans,et al.  Low temperature thermal, thermoelectric, and thermomagnetic transport in indium rich Pb1−xSnxTe alloys , 2008 .

[21]  J. Heremans Low-Dimensional Thermoelectricity , 2005 .

[22]  Daryl M. Beggs,et al.  Physics of Semiconductors, Pts A and B , 2007 .

[23]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[24]  M. Plischke,et al.  Magnetization studies of (GeTe) 1-x (MnTe) x pseudobinary alloys , 1974 .

[25]  J. Friedel,et al.  Propriétés magnétiques des alliages dilués. Interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition , 1959 .

[26]  T. Dietl Localization and Magnetic Interactions in Semimagnetic Semiconductors at Low Temperatures , 1987 .

[27]  Dumas,et al.  Determination of the Gd3+-Gd3+ exchange constants from susceptibility measurements on Pb1-xGdxTe. , 1988, Physical review. B, Condensed matter.

[28]  I. Terasaki,et al.  Effects of ppm-Level Imperfection on the Transport Properties of FeSb2 Single Crystals , 2011 .

[29]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[30]  D. Rowe,et al.  Electrical and thermal transport properties of intermediate-valence YbAl3 , 2002 .

[31]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[32]  W. Zawadzki,et al.  Magnetization, specific heat, magneto-thermal effect and thermoelectric power of two-dimensional electron gas in a quantizing magnetic field , 1984 .

[33]  G. A. Slack,et al.  New Materials and Performance Limits for Thermoelectric Cooling , 1995 .

[34]  I. Ravich Selective Carrier Scattering in Thermoelectric Materials , 1995 .

[35]  J. Heremans,et al.  Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power , 2009 .

[36]  R. Bate Evidence for a Selenium Donor Level above the Principal Conduction Band Edge in GaSb , 1962 .

[37]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[38]  J. Dimmock,et al.  Band Structure and Laser Action in Pb x Sn 1-x Te , 1966 .

[39]  J. Friedel,et al.  Étude de la résistivité et du pouvoir thermoélectrique des impuretés dissoutes dans les métaux nobles , 1956 .

[40]  P. Nielsen,et al.  Theory of thermoelectric effects in metals and alloys , 1974 .

[41]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[42]  V. Kulbachinskii,et al.  Thermoelectric Power and Scattering of Carriers in Bi2?xSnxTe3 with Layered Structure , 1997 .

[43]  D. L. Partin Growth and characterization of lead-tin-ytterbium-telluride for diode lasers , 1983 .

[44]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[46]  N. Brandt,et al.  Dynamics of the semiconductor-metal transition induced by infrared illumination in Pb1-xSnx Te(In) alloys , 1982 .

[47]  S. D. Mahanti,et al.  Electronic structure of Ga-, In-, and Tl-doped PbTe: A supercell study of the impurity bands , 2008 .

[48]  W. Paszkowicz,et al.  Transport and magnetic properties of dilute rare-earth–PbSe alloys , 2007 .

[49]  K. Murase,et al.  Investigation of Transport Properies in Pb1-xSnxTe Doped with Indium , 1984 .

[50]  Peijie Sun,et al.  Narrow band gap and enhanced thermoelectricity in FeSb2. , 2010, Dalton transactions.

[51]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[52]  H. Köhler,et al.  Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect , 1976 .

[53]  Resonant impurity scattering contribution to the mobility of Pb1−xSnxTe , 1996 .

[54]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[55]  J. Navrátil,et al.  Defect structure of Pb-doped Bi2Te3 single crystals , 2004 .

[56]  Perry,et al.  Observation of resonant impurity states in semiconductor quantum-well structures. , 1985, Physical review letters.

[57]  M. Cohen Electrons in fluids: the role of disorder , 1977 .

[58]  Spectroscopic ellipsometry study of Pb1−xEuxSe(0⩽x⩽0.45) , 1999 .

[59]  F. Wald,et al.  Massive heterovalent substitutions in octahedrally coordinated semiconductors , 1965 .

[60]  J. Heremans,et al.  Temperature dependence of excess carrier density and thermopower in tin-doped bismuth. Pseudo-parabolic model , 1983 .

[61]  S. Nemov,et al.  Hopping conduction via strongly localized impurity states of indium in PbTe and its solid solutions , 2002 .

[62]  J. Korringa,et al.  The cooperative electron phenomenon in dilute alloys , 1953 .

[63]  H. Santos,et al.  Electron Transmission through Graphene Bilayer Flakes , 2012 .

[64]  Z. Dashevsky,et al.  Development of p-Pb1-xSnxTe Functionally Graded Materials , 2006, 2006 25th International Conference on Thermoelectrics.

[65]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[66]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[67]  M. Kanatzidis,et al.  Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics , 2009, 0911.2685.

[68]  A. Bansil,et al.  Green's function and a generalized Lloyd formula for the density of states in disordered muffin-tin alloys. , 1990, Physical review. B, Condensed matter.

[69]  P. Becla,et al.  3d Transition Metals in II-VI Semiconductors , 1989 .

[70]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[71]  W. Dobrowolski,et al.  Peculiarities of transport properties in semiconductors with resonant impurities: HgSe : Fe versus PbTe : Cr , 1994 .

[72]  F. Bassani,et al.  Electronic impurity levels in semiconductors , 1974 .

[73]  M. Tacke,et al.  Molecular beam epitaxy of Pb1-xSrxSe for the use in IR devices , 1991 .

[74]  J. Friedel,et al.  ON SOME ELECTRICAL AND MAGNETIC PROPERTIES OF METALLIC SOLID SOLUTIONS , 1956 .

[75]  H. Hasanov,et al.  Energy spectrum of charge carriers in SmxPb1 − xTe , 2011 .

[76]  Braunstein,et al.  Magnetic properties of Pb1-xEuxTe grown by molecular-beam epitaxy. , 1987, Physical review. B, Condensed matter.

[77]  J. Heremans,et al.  SnTe–AgSbTe2 Thermoelectric Alloys , 2012 .

[78]  H. Schlegel,et al.  Growth and characterisation of Pb1-xEuxTe , 1985 .

[79]  C. M. Thrush,et al.  Magnetic and thermal properties of iron-doped lead telluride , 2003 .

[80]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[81]  H. Bluhm,et al.  Evidence for charge Kondo effect in superconducting Tl-doped PbTe. , 2004, Physical review letters.

[82]  John L. Moll,et al.  Physics of Semiconductors , 1964 .

[83]  O. Heinonen,et al.  A quantum approach to condensed matter physics , 2002 .

[84]  V. Kulbachinskii,et al.  Magnetoresistance and Hall Effect in Bi2Te3〈Sn〉 in Ultrahigh Magnetic Fields and under Pressure , 1988 .

[85]  N. Chernova,et al.  Impurity-induced magnetism in Pb 1-x-y Ge x Yb y Te , 2002 .

[86]  Y. Ravich,et al.  REVIEWS OF TOPICAL PROBLEMS: Thallium dopant in lead chalcogenides: investigation methods and peculiarities , 1998 .

[87]  T. Geballe,et al.  Type II superconducting parameters of Tl-doped PbTe determined from heat capacity and electronic transport measurements , 2006 .

[88]  Y. Ravich,et al.  Deep and resonance states in A IV B VI semiconductors , 1985 .

[89]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[90]  Zhou,et al.  Vibronic dispersion in the copper oxide superconductors. , 1994, Physical review. B, Condensed matter.

[91]  D. L. Partin Lead telluride doped with rare‐earth elements , 1985 .

[92]  J. Kondo Giant Thermo-Electric Power of Dilute Magnetic Alloys , 1965 .

[93]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[94]  J. Friedel,et al.  Localized States in Dilute Alloys , 1965 .

[95]  G. Iadonisi,et al.  Resonant States in III–V Semiconductor Compounds , 1974 .

[96]  Story,et al.  New Mechanism of f-f Exchange Interactions Controlled by Fermi Level Position. , 1996, Physical review letters.

[97]  Tomohiro Yamada,et al.  Electrical and optical properties of SnEuTe and SnSrTe films , 2010 .

[98]  J. Toboła,et al.  Linear aspects of the Korringa Kohn Rostoker formalism , 2004 .

[99]  Ab initio studies of the electronic structure of defects in PbTe , 2006, cond-mat/0605538.

[100]  S. Mahanti,et al.  Ab initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. , 2006, Physical review letters.