Sodium butyrate epigenetically modulates high‐fat diet‐induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning

Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood.

[1]  T. Gettys,et al.  Dietary Quercetin Supplementation in Mice Increases Skeletal Muscle PGC1α Expression, Improves Mitochondrial Function and Attenuates Insulin Resistance in a Time-Specific Manner , 2014, PloS one.

[2]  F. Greenway,et al.  Resistant starch from high amylose maize (HAM‐RS2) and Dietary butyrate reduce abdominal fat by a different apparent mechanism , 2014, Obesity.

[3]  F. Ashcroft,et al.  Deletion of Nicotinamide Nucleotide Transhydrogenase: A New Quantitive Trait Locus Accounting for Glucose Intolerance in C57BL/6J Mice. Diabetes 2006;55:2153–2156 , 2014, Diabetes.

[4]  Adam J Pawson,et al.  The Concise Guide to Pharmacology 2013/14: Enzymes , 2013, British journal of pharmacology.

[5]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands , 2013, Nucleic Acids Res..

[6]  A. Vercesi,et al.  A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. , 2013, Free radical biology & medicine.

[7]  L. Spriet,et al.  AMP‐activated protein kinase is required for exercise‐induced peroxisome proliferator‐activated receptor γ co‐activator 1α translocation to subsarcolemmal mitochondria in skeletal muscle , 2013, The Journal of physiology.

[8]  Antonello Mai,et al.  Inhibition of Class I Histone Deacetylases Unveils a Mitochondrial Signature and Enhances Oxidative Metabolism in Skeletal Muscle and Adipose Tissue , 2013, Diabetes.

[9]  L. Aronne,et al.  Effects of Late Gestational High Fat Diet on Body Weight, Metabolic Regulation and Adipokine Expression in Offspring , 2013, International Journal of Obesity.

[10]  Christopher J. Ott,et al.  Nucleosome mapping across the CFTR locus identifies novel regulatory factors , 2013, Nucleic acids research.

[11]  C. Meiklejohn,et al.  An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila , 2013, PLoS genetics.

[12]  R. Burton,et al.  A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? , 2012, Molecular ecology.

[13]  Hua V. Lin,et al.  Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms , 2012, PloS one.

[14]  D. O'Gorman,et al.  Acute exercise remodels promoter methylation in human skeletal muscle. , 2012, Cell metabolism.

[15]  R. Berni Canani,et al.  The epigenetic effects of butyrate: potential therapeutic implications for clinical practice , 2012, Clinical Epigenetics.

[16]  Paolo Sassone-Corsi,et al.  Connecting Threads: Epigenetics and Metabolism , 2012, Cell.

[17]  K. Dudley,et al.  Offspring of Mothers Fed a High Fat Diet Display Hepatic Cell Cycle Inhibition and Associated Changes in Gene Expression and DNA Methylation , 2011, PloS one.

[18]  Steven M. Johnson,et al.  Determinants of nucleosome organization in primary human cells , 2011, Nature.

[19]  Jonathan Schug,et al.  The Nucleosome Map of the Mammalian Liver , 2011, Nature Structural &Molecular Biology.

[20]  J. Auwerx,et al.  Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. , 2011, The American journal of clinical nutrition.

[21]  N. Billestrup,et al.  Histone Deacetylase (HDAC) Inhibition as a Novel Treatment for Diabetes Mellitus , 2011, Molecular medicine.

[22]  B. Franklin Pugh,et al.  High-Resolution Genome-wide Mapping of the Primary Structure of Chromatin , 2011, Cell.

[23]  M. Tarnopolsky,et al.  Exercise Increases Mitochondrial PGC-1α Content and Promotes Nuclear-Mitochondrial Cross-talk to Coordinate Mitochondrial Biogenesis* , 2011, The Journal of Biological Chemistry.

[24]  E. Leiter,et al.  Diet‐induced Obesity in Two C57BL/6 Substrains With Intact or Mutant Nicotinamide Nucleotide Transhydrogenase (Nnt) Gene , 2010, Obesity.

[25]  M. Esteller,et al.  Epigenetic modifications and human disease , 2010, Nature Biotechnology.

[26]  I. T. de Almeida,et al.  Carnitine palmitoyltransferase 2: New insights on the substrate specificity and implications for acylcarnitine profiling. , 2010, Biochimica et biophysica acta.

[27]  I. Cuthill,et al.  Animal Research: Reporting In Vivo Experiments: The ARRIVE Guidelines , 2010, British journal of pharmacology.

[28]  C. Kilkenny,et al.  Guidelines for reporting experiments involving animals: the ARRIVE guidelines , 2010, British journal of pharmacology.

[29]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[30]  W. Sivitz,et al.  Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. , 2010, Antioxidants & redox signaling.

[31]  S. Humphries,et al.  Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study , 2010, BMJ : British Medical Journal.

[32]  R. DeFronzo,et al.  Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes , 2009, Diabetes Care.

[33]  J. Zierath,et al.  Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. , 2009, Cell metabolism.

[34]  Justin R. Cross,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009, Science.

[35]  W. Cefalu,et al.  Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice , 2009, Diabetes.

[36]  T. Moran,et al.  Prenatal Stress or High-Fat Diet Increases Susceptibility to Diet-Induced Obesity in Rat Offspring , 2009, Diabetes.

[37]  O. Ilkayeva,et al.  Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  S. Carr,et al.  A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology , 2008, Cell.

[39]  Steven M. Johnson,et al.  A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. , 2008, Genome research.

[40]  B. Kemp,et al.  AMP-Activated Protein Kinase Regulates GLUT4 Transcription by Phosphorylating Histone Deacetylase 5 , 2008, Diabetes.

[41]  E. Mariman,et al.  Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. , 2008, Physiological genomics.

[42]  J. Craigon,et al.  DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status , 2007, Proceedings of the National Academy of Sciences.

[43]  C. Mantzoros,et al.  Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. , 2007, The Journal of biological chemistry.

[44]  I. Albert,et al.  Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome , 2007, Nature.

[45]  I. Suetake,et al.  Distinct DNA methylation activity of Dnmt3a and Dnmt3b towards naked and nucleosomal DNA. , 2006, Journal of biochemistry.

[46]  P. Chiao,et al.  Regulation of Nuclear Translocation of HDAC3 by IκBα Is Required for Tumor Necrosis Factor Inhibition of Peroxisome Proliferator-activated Receptor γ Function* , 2006, Journal of Biological Chemistry.

[47]  G. Bray,et al.  A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. , 2005, Diabetes.

[48]  C. Gallou-Kabani,et al.  Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. , 2005, Diabetes.

[49]  C. Dey,et al.  PPAR‐γ expression modulates insulin sensitivity in C2C12 skeletal muscle cells , 2004 .

[50]  R. Evans,et al.  Regulation of Muscle Fiber Type and Running Endurance by PPARδ , 2004, PLoS biology.

[51]  R. Toillon,et al.  Sodium butyrate induces P53‐independent, Fas‐mediated apoptosis in MCF‐7 human breast cancer cells , 2002, British journal of pharmacology.

[52]  A. Kralli,et al.  PGC-1, a versatile coactivator , 2001, Trends in Endocrinology & Metabolism.

[53]  E. Olson,et al.  MEF2 responds to multiple calcium‐regulated signals in the control of skeletal muscle fiber type , 2000, The EMBO journal.

[54]  R. Kingston,et al.  ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. , 1999, Genes & development.

[55]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[56]  C. Bouchard,et al.  Genetics of human obesity: recent results from linkage studies. , 1997, The Journal of nutrition.

[57]  G. Leveille,et al.  In vivo metabolism of SALATRIM fats in the rat , 1994 .

[58]  R. Scarpulla,et al.  NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. , 1990, Genes & development.

[59]  L. Groop,et al.  Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. , 1989, The New England journal of medicine.

[60]  P. Garland,et al.  Carnitine palmitoyltransferase activities (EC 2.3.1.-) of rat liver mitochondria. , 1970, The Biochemical journal.

[61]  Justin A. Pruneski,et al.  Intergenic transcription causes repression by directing nucleosome assembly. , 2011, Genes & development.

[62]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[63]  M. Hargreaves,et al.  Histone modifications and skeletal muscle metabolic gene expression , 2010, Clinical and experimental pharmacology & physiology.

[64]  Nir Friedman,et al.  High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. , 2010, Genome research.

[65]  R. Swerdlow,et al.  Regulation of neuron mitochondrial biogenesis and relevance to brain health. , 2010, Biochimica et biophysica acta.

[66]  Olga Ilkayeva,et al.  Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. , 2008, Cell metabolism.

[67]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[68]  A. Vigé,et al.  [Nutritional epigenomics of metabolic syndrome]. , 2005, Medecine sciences : M/S.

[69]  B. Black,et al.  Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. , 1998, Annual review of cell and developmental biology.

[70]  G. Shulman,et al.  Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. , 1995, The Journal of clinical investigation.