Nanometer-Thick Thiophene Monolayers as Templates for the Gas-Phase Epitaxy of Poly(3,4-Ethylenedioxythiophene) Films on Gold: Implications for Organic Electronics

[1]  M. Hara,et al.  Comparative study of structural order, thermal desorption behavior, and work function change of self-assembled monolayers of pentafluorobenzenethiols and tetrafluorobenzenethiols on Au(1 1 1) , 2021, Applied Surface Science.

[2]  K. Gleason Nanoscale control by chemically vapour-deposited polymers , 2020, Nature Reviews Physics.

[3]  Xiaoxue Wang,et al.  High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment , 2018, Science Advances.

[4]  N. S. Sariciftci,et al.  Metallic conductivity beyond the Mott minimum in PEDOT: Sulphate at low temperatures , 2018, Synthetic Metals.

[5]  Julio M. D’Arcy,et al.  Metal Oxide-Assisted PEDOT Nanostructures via Hydrolysis-Assisted Vapor-Phase Polymerization for Energy Storage , 2018 .

[6]  N. S. Sariciftci,et al.  Chemical vapor deposition - based synthesis of conductive polydopamine thin-films , 2018 .

[7]  Liyan Yu,et al.  Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order , 2017, Macromolecules.

[8]  N. S. Sariciftci,et al.  Anderson‐Localization and the Mott–Ioffe–Regel Limit in Glassy‐Metallic PEDOT , 2017 .

[9]  G. J. Snyder,et al.  Charge-transport model for conducting polymers , 2017 .

[10]  S. Rawlinson,et al.  Fabrication and electrochemical characterization of polydopamine redox polymer modified screen-printed carbon electrode for the detection of guanine , 2016 .

[11]  Renaud Demadrille,et al.  Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement , 2016 .

[12]  H. Sirringhaus,et al.  2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. , 2016, Nature materials.

[13]  B. Wardle,et al.  Room Temperature Resistive Volatile Organic Compound Sensing Materials Based on a Hybrid Structure of Vertically Aligned Carbon Nanotubes and Conformal oCVD/iCVD Polymer Coatings , 2016 .

[14]  N. S. Sariciftci,et al.  CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE-PPV , 2015 .

[15]  Magnus Berggren,et al.  Electronic plants , 2015, Science Advances.

[16]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[17]  O. Inganäs,et al.  Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films. , 2015, ACS applied materials & interfaces.

[18]  Mingda Li,et al.  Low‐Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers , 2015, Advanced materials.

[19]  X. Crispin,et al.  Ionic Seebeck Effect in Conducting Polymers , 2015 .

[20]  Christophe Bernard,et al.  High-performance transistors for bioelectronics through tuning of channel thickness , 2015, Science Advances.

[21]  Ruxangul Jamal,et al.  Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue , 2015, Nanoscale Research Letters.

[22]  Kuo-Chen Wei,et al.  Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures , 2015, Sensors.

[23]  D. Paine,et al.  Heavily Doped poly(3,4‐ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: Conductivity Stability and Carrier Transport , 2014 .

[24]  M. Sung,et al.  Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. , 2014, Nano letters.

[25]  M. El‐Kady,et al.  Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. , 2014, ACS nano.

[26]  George G. Malliaras,et al.  The Rise of Organic Bioelectronics , 2014 .

[27]  N. S. Sariciftci,et al.  Efficiency of bulk-heterojunction organic solar cells , 2013, Progress in polymer science.

[28]  Kyriaki Manoli,et al.  Organic field-effect transistor sensors: a tutorial review. , 2013, Chemical Society reviews.

[29]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[30]  P. Leleux,et al.  High transconductance organic electrochemical transistors , 2013, Nature Communications.

[31]  Ji-Woong Park,et al.  Polymeric self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces. , 2010, Chemical Society reviews.

[32]  George G. Malliaras,et al.  Organic Electronics at the Interface with Biology , 2010 .

[33]  Masahiko Hara,et al.  Formation and superlattice of long-range-ordered self-assembled monolayers of pentafluorobenzenethiols on Au(111). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[34]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[35]  Edwin Jager,et al.  Translating Electronic Currents to Precise Acetylcholine–Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device , 2009 .

[36]  Yunhong Zhou,et al.  Poly[3,4-(ethylenedithio)thiophene] : High specific capacity cathode active material for lithium rechargeable batteries , 2008 .

[37]  Udo Lang,et al.  Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges , 2008 .

[38]  Karl Leo,et al.  Transparent electrode materials for solar cells , 2008, Photonics Europe.

[39]  M. Berggren,et al.  Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. , 2007, Nature materials.

[40]  Alik S Widge,et al.  Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. , 2007, Biosensors & bioelectronics.

[41]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[42]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[43]  K. Müllen,et al.  Influence of molecular order on the local work function of nanographene architectures: a Kelvin-probe force microscopy study. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[45]  Changcheng Zhu,et al.  A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. , 2004, Chemical communications.

[46]  W. Andreoni,et al.  Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction , 2000 .

[47]  S. Armes,et al.  Surface characterization of poly(3,4-ethylenedioxythiophene)-coated latexes by X-ray photoelectron spectroscopy , 2000 .

[48]  George G. Malliaras,et al.  Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes , 1999 .

[49]  D. Reinhoudt,et al.  Electrochemical stability of self-assembled monolayers on gold , 1998 .

[50]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[51]  J. Epstein,et al.  Electrochemical reduction of dilute nitric acid , 1964 .