Multi-field visualization on graphics processing units

The generation of multi-field data has become commonplace in many scientific disciplines and application areas today. While researchers have produced numerous techniques for analyzing a single scalar, vector, or tensor field over the last years, finding approaches for exploring multi-field datasets still forms one of the significant challenges in visualization and analytics. One crucial aspect for the growing demand of multi-field visualization techniques is the fact that scientists need to explore the interaction of these fields to gain deeper understanding of underlying processes and relationships. This work addresses the challenge of illustrating multi-field data and presents new approaches of visualization techniques for a variety of application areas, with the aim to map these algorithms to graphics hardware architectures to achieve interactive visualization. In particular, the main contributions of this thesis contain multi-field flow visualization with one focus on integrating an additional flow uncertainty value, based on measurement simulation, into visualization. Therefore, texture based advection techniques are extended for the transport and display of the additional information. The second focus lies on the illustration of multiple fields as one combined characteristic set to minimize memory usage and allow further feature extraction from the new unique representation. New techniques are developed for multi-field volume rendering in the area of medical applications, with the primary challenge to intermix volumetric data that was acquired by different medical imaging modalities. The proposed solutions give implementation details for raycasting and slice-based rendering of multiple overlapping volumes. The third application area is video visualization. This domain is a typical representative for multi-field visualization, as it combines both, flow fields and multi-volume data for illustration. The goal of the introduced video visualization techniques is to extract dynamic or still objects in a scene, detect their individual actions and the relations among each other and to display this filtered information as a continuous stream of signatures for analysis. Another problematic issue in multi-field visualization is the size of the data, which is usually rather large. Yet, data transfer to and memory size on GPUs are two major bottlenecks. To address this issue, throughout the thesis techniques for data reduction by combination and data bricking for continuous streaming are discussed. Finally, multi-field data encoding and visualization techniques are presented that utilize the advantages of radial basis functions to minimize the data size. Die Generierung von Multifeld-Daten ist heutzutage in vielen wissenschaftlichen Disziplinen und auch in praktischen Anwendungsgebieten weit verbreitet. Wahrend Wissenschaftler im Verlauf der letzten Jahre zahlreiche Techniken fur die Analyse von einzelnen Skalar-, Vektor-, und Tensorfeldern entwickelten, so bergen Losungsansatze zur Erkundung von Multifeld-Datensatzen eine komplexere Problematik, die die Forschung im Bereich der Visualisierung und der Analytik vor enorme Herausforderungen stellt. Ein entscheidender Aspekt fur die steigende Nachfrage an Multifeld-Visualisierungsmethoden ist die Tatsache, dass Wissenschaftler und Analysten die Interaktion zwischen mehreren in Relation zueinander stehenden Feldern erforschen wollen, um weitere Erkenntnisse uber die beobachteten Phanomene zu gewinnen, um so ein tieferes Verstandnis der zugrunde liegenden Prozesse zu ermoglichen. Diese Arbeit behandelt Problemstellungen, die bei der Visualisierung von Multifeld-Daten auftreten und prasentiert neue Visualisierungskonzepte und Algorithmen fur eine Vielzahl von Anwendungsgebieten. Ziel ist weiterhin, diese Algorithmen auf moderne Grafikhardwarearchitekturen abzubilden, um so verstarkt eine interaktive Darstellung zu gewahrleisten, die fur einen kontinuierlichen Analyseprozess von groser Bedeutung ist. Im Einzelnen enthalten die Beitrage in dieser Doktorarbeit Konzepte zur Visualisierung von Multifeld-Stromungsdaten, mit Fokus der Integration eines zusatzlichen Ungenauigkeitsparameters in die Darstellung, der bei Messung oder Simulation der Daten entstehen kann. Fur die Umsetzung wird eine bildbasierte Stromungsvisualisierungstechnik, die auch als Texturadvektion bekannt ist, implementiert. Diese Technik wird erweitert, um zusatzliche Informationen zu transportieren und darzustellen. Der zweite Schwerpunkt im Bereich der Stromungsvisualisierung basiert auf einer Technik zur Illustration von mehreren Skalarfeldern als ein logisch kombiniertes charakteristisches Skalarfeld. Der Vorteil dieser Technik liegt zum einen in der Minimierung des Speicherbedarfs, fuhrt zu einer vereinfachten Suche und Extraktion von Stromungscharakteristiken auf dem reduzierten Feld und kann zum anderen als Kriterium verwendet werden, um Partikel in die Stromung zu injizieren. Ein weiterer Teil behandelt neue Techniken zur Multifeld-Volumenvisualisierung von mehreren zusammengehorigen skalaren Feldern aus dem medizinischen Kontext. Die primare Herausforderung liegt hier im geeigneten Vermischen der einzelnen volumetrischen Daten, die durch verschiedene medizinische Bildgebungsverfahren erzeugt wurden. Insbesondere bei der Wahl eines spezifischen Algorithmus zur direkten Volumenvisualisierung sind hier unterschiedliche Aspekte zu beachten. Die prasentierten Losungen beinhalten Implementierungsdetails fur Raycasting sowie fur das Schnittebenen-basierte Verfahren zur Visualisierung von Szenen, in denen sich mehrere Volumen uberschneiden. Der dritte Kernbereich dieser Dissertation behandelt die Videovisualisierung. Dieses Anwendungsgebiet ist ein klassischer Stellvertreter fur Multifeld-Visualisierung. Hier werden beide bisher besprochenen Gebiete fur die Darstellung der Multifeld-Daten kombiniert. Multifeld-Videodaten beinhalten sowohl Volumendaten von extrahierten Objekten als auch Bewegungsinformationen und somit Stromungsdaten dieser Objekte die zur Visualisierung herangezogen werden. Ziel der vorgestellten Videovisualisierungstechniken ist die Extraktion dynamischer und statischer Objekte aus einer Szene und weiterfuhrend die Detektion von individuellen Aktionen und Relationen, die den einzelnen Objekten zugeordnet werden konnen. Anhand dieser gefilterten Informationen wird dann eine kontinuierliche Endlosdarstellung des Videos generiert, wobei die extrahierten Objekte in dieser Ansicht als raum-zeitliche Signaturen dargestellt werden, die fur die Analyse der Daten von grosem Wert sind. Eine weitere Problematik, die bei der Visualisierung von Multifeld-Daten auftitt, ist die Tatsache, dass die Existenz von mehreren, in der Regel recht grosen Datenfeldern auch unweigerlich zu einem enormen Speicherbedarf fuhrt. Der Transport groser Datenmengen vom Hauptspeicher zum Grafikspeicher ist jedoch ein wesentlicher Flaschenhals, der fur die Realisierung von interaktiven Visualisierungstechniken berucksichtigt werden muss. Verschiedene Losungsvorschlage fur diese Problemstellung finden sich in dieser Dissertation in Form einer Unterteilung der Daten in einzelne Blocke, die dann kontinuierlich zur GPU heruntergeladen werden konnen. Auch die Kombination und somit eine Fusion von mehreren Datenfeldern zu einem charakteristischen Datenfeld, das dann platzsparend im Grafikspeicher gelagert werden kann, wird hier vorgestellt. Da diese Form von Datenhandhabung nicht in allen Anwendungsgebieten einsetzbar ist, widmet sich das letzte Kapitel ausschlieslich der Rekonstruktion von komprimierten Multifeld-Daten. Durch Approximation mittels radialer Basisfunktionen ist es moglich, komplette Multifeld-Datensatze durch eine neue Datenstruktur zu reprasentieren und so als Ganzes im GPU-Speicher zu lagern. Um diese komprimierten Multifeld-Daten darzustellen, prasentiert diese Arbeit GPU-basierte Dekodierungsalgorithmen, die eine interaktive Rekonstruktion und Visualisierung ermoglichen.

[1]  Sidney Fels,et al.  Techniques for Interactive Video Cubism , 2000 .

[2]  Xiaoyang Mao,et al.  Line Integral Convolution for 3D Surfaces , 1997, Visualization in Scientific Computing.

[3]  Lisa K. Forssell,et al.  Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows , 1995, IEEE Trans. Vis. Comput. Graph..

[4]  Robert J. Moorhead,et al.  AUFLIC: An Accelerated Algorithm For Unsteady Flow Line Integral Convolution , 2002, VisSym.

[5]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[6]  Dinesh K. Pai,et al.  Direct surface extraction from 3D freehand ultrasound images , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Thomas Ertl,et al.  Hardware-accelerated point-based rendering of surfaces and volumes , 2007 .

[9]  P. R. Moran,et al.  The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI , 1997 .

[10]  Georgios Sakas,et al.  Data Intermixing and Multi‐volume Rendering , 1999, Comput. Graph. Forum.

[11]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[12]  David S. Ebert,et al.  Non-photorealistic volume rendering using stippling techniques , 2002, IEEE Visualization, 2002. VIS 2002..

[13]  Roni Yagel,et al.  Interactive Space Deformation with Hardware-Assisted Rendering , 1997, IEEE Computer Graphics and Applications.

[14]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[15]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[16]  Thomas Ertl,et al.  Hardware-Accelerated Visualization of Time-Varying 2D and 3D Vector Fields by Texture Advection via Programmable Per-Pixel Operations , 2001, VMV.

[17]  D. Dorney, Reynolds-Averaged Navier-Stokes Studies of Low Reynolds Number Effects on the Losses in a Low Pressure Turbine , 1996 .

[18]  Arie E. Kaufman,et al.  Tetra-Cubes: An algorithm to generate 3D isosurfaces based upon tetrahedra , 1996 .

[19]  Octavian Frederich,et al.  Flow Simulation around a Finite Cylinder on Massively Parallel Computer Architecture , 2006 .

[20]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[21]  Thomas Ertl,et al.  Mesh Optimization and Multilevel Finite Element Approximations , 1997, VisMath.

[22]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[23]  Wilfrid Lefer,et al.  Unsteady Flow Visualization by Animating Evenly‐Spaced Streamlines , 2000, Comput. Graph. Forum.

[24]  Thomas Ertl,et al.  Texture-Based Visualization of Unsteady 3D Flow by Real-Time Advection and Volumetric Illumination , 2007, IEEE Trans. Vis. Comput. Graph..

[25]  David S. Ebert,et al.  Hardware-assisted feature analysis and visualization of procedurally encoded multifield volumetric data , 2005, IEEE Computer Graphics and Applications.

[26]  Jarke J. van Wijk,et al.  Image based flow visualization , 2002, ACM Trans. Graph..

[27]  Hans-Peter Seidel,et al.  Robust filtering of noisy scattered point data , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[28]  Min Chen,et al.  Visual Signatures in Video Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[29]  M. Irani,et al.  Event-Based Video Analysis, , 2001 .

[30]  Min Chen,et al.  Feature Aligned Volume Manipulation for Illustration and Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[31]  Anthony L Bertapelle Spectral Analysis of Time Series. , 1979 .

[32]  Jim X. Chen,et al.  OpenGL Shading Language , 2009 .

[33]  David S. Ebert,et al.  Illustration and photography inspired visualization of flows and volumes , 2005, VIS 05. IEEE Visualization, 2005..

[34]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[35]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[36]  K. D. Hinsch Holographie particle image velocimetry , 2002 .

[37]  Leonard McMillan,et al.  Proscenium: a framework for spatio-temporal video editing , 2003, ACM Multimedia.

[38]  T. Ertl,et al.  Interactive exploration of unsteady 3D flow with linked 2D/3D texture advection , 2005, Coordinated and Multiple Views in Exploratory Visualization (CMV'05).

[39]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[40]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[41]  Mubarak Shah,et al.  View-Invariant Representation and Recognition of Actions , 2002, International Journal of Computer Vision.

[42]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[43]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[44]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[45]  Dorin Comaniciu,et al.  Robust anisotropic Gaussian fitting for volumetric characterization of Pulmonary nodules in multislice CT , 2005, IEEE Transactions on Medical Imaging.

[46]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[47]  Ross Brown Animated visual vibrations as an uncertainty visualisation technique , 2004, GRAPHITE '04.

[48]  Min Chen,et al.  Video visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[49]  Robert S. Laramee,et al.  Uncertainty Visualization Methods in Isosurface Rendering , 2003, Eurographics.

[50]  David S. Ebert,et al.  Interactively visualizing procedurally encoded scalar fields , 2004, VISSYM'04.

[51]  Thomas Ertl,et al.  Hardware-accelerated Extraction and Rendering of Point Set Surfaces , 2006, EuroVis.

[52]  David L. Marcum,et al.  SOLUTION ADAPTIVE UNSTRUCTURED GRID GENERATION USING PSEUDO-PATTERN RECOGNITION TECHNIQUES , 1997 .

[53]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Min Chen,et al.  Action-Based Multifield Video Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[55]  Bernhard Preim,et al.  Virtual Resection with a Deformable Cutting Plane , 2004, SimVis.

[56]  Zhonghua Sun,et al.  Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. , 2006, European journal of radiology.

[57]  Thomas Ertl,et al.  A Generic Software Framework for the GPU Volume Rendering Pipeline , 2005 .

[58]  Suya You,et al.  3D video surveillance with Augmented Virtual Environments , 2003, IWVS '03.

[59]  R. Victor Klassen,et al.  Shadowed hedgehogs: a technique for visualizing 2D slices of 3D vector fields , 1991, Proceeding Visualization '91.

[60]  Wilfrid Lefer,et al.  The motion map: efficient computation of steady flow animations , 1997 .

[61]  Larry S. Davis,et al.  Monitoring human and vehicle activities using airborne video , 2000, Applied Imaging Pattern Recognition.

[62]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[63]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[64]  Gordon Erlebacher,et al.  Overview of Flow Visualization , 2005, The Visualization Handbook.

[65]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[66]  Erik Reinhard,et al.  Face-based luminance matching for perceptual colormap generation , 2002, IEEE Visualization, 2002. VIS 2002..

[67]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[68]  Gordon Erlebacher,et al.  Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[69]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[70]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[71]  Adrian M. K. Thomas,et al.  Classic Papers in Modern Diagnostic Radiology , 2005 .

[72]  Min Chen,et al.  Constructive Volume Geometry , 2000, Comput. Graph. Forum.

[73]  Thomas Ertl,et al.  Interactive Visualization of Divergence in Unsteady Flow by Level-Set Dye Advection , 2005, SimVis.

[74]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[75]  Kazuo Kyuma,et al.  Computer vision for computer games , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[76]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[77]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[78]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[79]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[80]  Marcel Worring,et al.  Multimodal Video Indexing : A Review of the State-ofthe-art , 2001 .

[81]  Nikolaos Grammalidis,et al.  Head detection and tracking by 2-D and 3-D ellipsoid fitting , 2000, Proceedings Computer Graphics International 2000.

[82]  B. Weigand,et al.  Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate Reynolds numbers , 2008 .

[83]  Don Dovey Vector plots for irregular grids , 1995, Proceedings Visualization '95.

[84]  Kwan-Liu Ma,et al.  Visualizing vector fields using line integral convolution and dye advection , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[85]  Ralf P. Botchen,et al.  INTERACTIVE VISUALIZATION OF UNCERTAINTY IN FLOW FIELDS USING TEXTURE-BASED TECHNIQUES , .

[86]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[87]  R. Haimes,et al.  On the velocity gradient tensor and fluid feature extraction , 1999 .

[88]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[89]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[90]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[91]  Roger Phillips,et al.  Implicit Fitting Using Radial Basis Functions with Ellipsoid Constraint , 2004, Comput. Graph. Forum.

[92]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[93]  Daniel Weiskopf,et al.  Dye Advection Without the Blur: A Level‐Set Approach for Texture‐Based Visualization of Unsteady Flow , 2004, Comput. Graph. Forum.

[94]  Giuseppe Carlo Calafiore,et al.  Approximation of n-dimensional data using spherical and ellipsoidal primitives , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[95]  Adam Huang,et al.  Thin structure segmentation and visualization in three-dimensional biomedical images: a shape-based approach , 2006, IEEE Transactions on Visualization and Computer Graphics.

[96]  Roberto Scopigno,et al.  Multiresolution volume visualization with a texture-based octree , 2001, The Visual Computer.

[97]  Robert Haimes,et al.  Shock detection from computational fluid dynamics results , 1999 .

[98]  Markus Hadwiger,et al.  High-quality two-level volume rendering of segmented data sets on consumer graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[99]  David N. Kenwright,et al.  Automatic detection of open and closed separation and attachment lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[100]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[101]  Thomas Ertl,et al.  Dynamic Shader Generation for GPU-Based Multi-Volume Ray Casting , 2008, IEEE Computer Graphics and Applications.

[102]  Thomas Ertl,et al.  Smart Hardware-Accelerated Volume Rendering , 2003, VisSym.

[103]  Robert B. Fisher,et al.  The PETS04 Surveillance Ground-Truth Data Sets , 2004 .

[104]  Dietmar Saupe,et al.  Rapid High Quality Compression of Volume Data for Visualization , 2001, Comput. Graph. Forum.

[105]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[106]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[107]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[108]  Arie E. Kaufman,et al.  Mixing translucent polygons with volumes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[109]  Wolfgang Krüger The application of transport theory to visualization of 3D scalar data fields , 1990, VIS '90.

[110]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[111]  Thomas Ertl,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Topology-preserving Λ 2 -based Vortex Core Line Detection for Flow Visualization , 2022 .

[112]  Yi Wang,et al.  Contextualized Videos: Combining Videos with Environment Models to Support Situational Understanding , 2007, IEEE Transactions on Visualization and Computer Graphics.

[113]  Lambertus Hesselink,et al.  EVALUATION OF FLOW TOPOLOGY FROM NUMERICAL DATA , 1987 .

[114]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[115]  Arnaud Jacquin,et al.  Harnessing chaos for image synthesis , 1988, SIGGRAPH.

[116]  D. Louis Collins,et al.  Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases , 2006, IEEE Transactions on Medical Imaging.

[117]  Min Chen,et al.  GPU-assisted Multi-field Video Volume Visualization , 2006, VG@SIGGRAPH.

[118]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[119]  Andreas Sundquist Dynamic Line Integral Convolution for Visualizing Streamline Evolution , 2003, IEEE Trans. Vis. Comput. Graph..

[120]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[121]  Nilesh V. Patel,et al.  Video shot detection and characterization for video databases , 1997, Pattern Recognit..

[122]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[123]  Eli Shechtman,et al.  Space-time behavior based correlation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[124]  Min Chen,et al.  Combining point clouds and volume objects in volume scene graphs , 2005, Fourth International Workshop on Volume Graphics, 2005..

[125]  Günther Greiner,et al.  Fast volumetric deformation on general purpose hardware , 2001, HWWS '01.

[126]  Stefan Bruckner,et al.  Flexible direct multi-volume rendering in interactive scenes , 2004 .

[127]  Thomas Ertl,et al.  Dynamic Shader Generation for Flexible Multi-Volume Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[128]  Nelson Max,et al.  Flow visualization using moving textures , 1995 .

[129]  Thomas Ertl,et al.  FLOW FEATURE VISUALIZATION USING LOGICAL OPERATORS ON MULTIVARIATE FIELDS , 2008 .

[130]  Kwan-Liu Ma,et al.  Interactive Multi-volume Visualization , 2002, International Conference on Computational Science.

[131]  Simon Stegmaier,et al.  A graphics hardware-based vortex detection and visualization system , 2004, IEEE Visualization 2004.

[132]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[133]  R. Manmatha,et al.  Statistical models for automatic video annotation and retrieval , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[134]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[135]  Siegfried Wagner,et al.  A Combined Experimental/Numerical Study of Unsteady Phenomena in a Laminar Separation Bubble , 2003 .

[136]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997 .

[137]  Kiyoharu Aizawa,et al.  A Solid-State, Simultaneous Wide Angle - Detailed View Video Surveillance Camera , 2003, VMV.

[138]  Hans Hagen,et al.  Hierarchical clustering for unstructured volumetric scalar fields , 2003, IEEE Visualization, 2003. VIS 2003..

[139]  WareColin Color Sequences for Univariate Maps , 1988 .

[140]  Ken Perlin,et al.  Painterly rendering for video and interaction , 2000, NPAR '00.

[141]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[142]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[143]  Wolfgang Straßer,et al.  Interactive Visualization of Volumetric Vector Fields Using Texture Based Particles , 2002, WSCG.

[144]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[145]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[146]  David S. Ebert,et al.  Enhancing the Interactive Visualization of Procedurally Encoded Multifield Data with Ellipsoidal Basis Functions , 2006, Comput. Graph. Forum.

[147]  Thomas Ertl,et al.  Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading , 2003, IEEE Trans. Vis. Comput. Graph..

[148]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[150]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[151]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[152]  Peter-Pike J. Sloan,et al.  Video Cubism , 2001 .

[153]  David R. Nadeau Volume Scene Graphs , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[154]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[155]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[156]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[157]  Jitendra Malik,et al.  Recognizing action at a distance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[158]  A. Ardeshir Goshtasby,et al.  Grouping and parameterizing irregularly spaced points for curve fitting , 2000, TOGS.

[159]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[160]  Daniel Weiskopf,et al.  Flow Textures: High-Resolution Flow Visualization , 2005, The Visualization Handbook.

[161]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[162]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[163]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[164]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[165]  Yang Song,et al.  Unsupervised Learning of Human Motion , 2003, IEEE Trans. Pattern Anal. Mach. Intell..