Maximality in finite-valued Łukasiewicz logics defined by order filters

In this paper we consider the logics $L_n^i$ obtained from the (n+1)-valued Lukasiewicz logics $L_{n+1}$ by taking the order filter generated by i/n as the set of designated elements. In particular, the conditions of maximality and strong maximality among them are analysed. We present a very general theorem which provides sufficient conditions for maximality between logics. As a consequence of this theorem it is shown that $L_n^i$ is maximal w.r.t. CPL whenever n is prime. Concerning strong maximality between the logics $L_n^i$ (that is, maximality w.r.t. rules instead of axioms), we provide algebraic arguments in order to show that the logics $L_n^i$ are not strongly maximal w.r.t. CPL, even for n prime. Indeed, in such case, we show there is just one extension between $L_n^i$ and CPL obtained by adding to $L_n^i$ a kind of graded explosion rule. Finally, using these results, we show that the logics $L_n^i$ with n prime and i/n < 1/2 are ideal paraconsistent logics.

[1]  Anna Zamansky,et al.  On Strong Maximality of Paraconsistent Finite-Valued Logics , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[2]  Grigore C. Moisil Essais sur les logiques non chrysippiennes , 1972 .

[3]  João Marcos 8K solutions and semi-solutions to a problem of da Costa , 2000 .

[4]  Joan Gispert,et al.  Locally Finite Quasivarieties of MV-algebras , 2014 .

[5]  Marcelo E. Coniglio,et al.  An alternative approach for quasi-truth , 2014, Log. J. IGPL.

[6]  Marcelo E. Coniglio,et al.  Contracting Logics , 2012, WoLLIC.

[7]  Anna Zamansky,et al.  Maximally Paraconsistent Three-Valued Logics , 2010, KR.

[8]  Isabel Loureiro Principal congruences of tetravalent modal algebras , 1985, Notre Dame J. Formal Log..

[9]  Josep Maria Font,et al.  An abstract algebraic logic approach to tetravalent modal logics , 2000, Journal of Symbolic Logic.

[10]  R. Wójcicki Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .

[11]  Ryszard Wójcicki,et al.  Theory of Logical Calculi , 1988 .

[12]  Hitoshi Omori,et al.  Classical Negation and Expansions of Belnap–Dunn Logic , 2015, Stud Logica.

[13]  Shahid Rahman,et al.  Logic, Epistemology, and the Unity of Science , 2004, Logic, Epistemology, and the Unity of Science.

[14]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[15]  Yuichi Komori SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS , 2004 .

[16]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[17]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[18]  Walter Alexandre Carnielli,et al.  Maximal weakly-intuitionistic logics , 1995, Stud Logica.

[19]  Luiz F.T. Monteiro Axiomes independants pour les algebres de Lukasiewicz trivalentes , 1964 .

[20]  Anna Zamansky,et al.  Ideal Paraconsistent Logics , 2011, Stud Logica.

[21]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[22]  Ventura Verdú,et al.  Lukasiewicz logic and Wajsberg algebras , 1990 .

[23]  W. Carnielli,et al.  JOÃO MARCOS LOGICS OF FORMAL INCONSISTENCY , 2001 .

[24]  Kerstin Vogler,et al.  Algebraic Foundations Of Many Valued Reasoning , 2016 .

[25]  W. Carnielli,et al.  Logics of Formal Inconsistency , 2007 .

[26]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[27]  Walter A. Carnielli,et al.  A Taxonomy of C-Systems , 2001 .

[28]  J. Martin Marcos,et al.  Formal inconsistency and evolutionary databases , 2004 .

[29]  Wiesjlaw Dziobiak On subquasivariety lattices of semi-primal varieties , 1985 .

[30]  Miguel Campercholi,et al.  The Subquasivariety Lattice of a Discriminator Variety , 2001 .

[31]  Yuichi Komori Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.

[32]  Lluis Godo,et al.  On the set of intermediate logics between the truth- and degree-preserving Łukasiewicz logics , 2016, Log. J. IGPL.

[33]  Marcelo E. Coniglio,et al.  On A Four-valued Modal Logic With Deductive Implication , 2014 .

[34]  M. E. Adams,et al.  $Q$-universal quasivarieties of algebras , 1994 .

[35]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .

[36]  Antoni Torrens Torrell,et al.  Quasivarieties Generated by Simple MV-algebras , 1998, Stud Logica.

[37]  Giovanni Panti,et al.  Varieties of MV-algebras , 1999, J. Appl. Non Class. Logics.