Lessons learned in integrating sensing into autonomous mobile robot architectures

This article discusses the impact of sensing on each aspect of the design of the CSM autonomous mobile robot architecture, in particular, the overall control scheme, coordination of behaviours, and representation of different types of knowledge. The CSM/ deliberative reactive system uses three novel mechanisms for maintaining robust perception: a perceptual schema for behavioural sensing, a sensing manager to globally allocate sensing resources, and abstract navigation behaviours to coordinate diverse sensing demands in addition to simplifying motor control. Examples of the operation of each are taken from software developed for the two CSM mobile robots operating in indoor and outdoor task domains.

[1]  Leslie Pack Kaelbling,et al.  An Architecture for Intelligent Reactive Systems , 1987 .

[2]  David Kortenkamp,et al.  Characterizing an Architecture for Intelligent, Reactive Agents , 1995 .

[3]  Ronald C. Arkin,et al.  Temporal coordination of perceptual algorithms for mobile robot navigation , 1994, IEEE Trans. Robotics Autom..

[4]  Raja Chatila,et al.  Plan execution monitoring and control architecture for mobile robots , 1995, IEEE Trans. Robotics Autom..

[5]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[6]  R. James Firby,et al.  Building symbolic primitives with continuous control routines , 1992 .

[7]  Reid Simmons,et al.  Autonomous task control for mobile robots , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[8]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[9]  R. R. Murphy,et al.  Learning the expected utility of sensors and algorithms , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[10]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[11]  Tucker R. Balch,et al.  Io, Ganymede, and Callisto A Multiagent Robot Trash-Collecting Team , 1995, AI Mag..

[12]  Marcel Schoppers,et al.  Universal Plans for Reactive Robots in Unpredictable Environments , 1987, IJCAI.

[13]  Robin R. Murphy,et al.  Sfx: An Architecture For Action-oriented Sensor Fusion , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Robin R. Murphy,et al.  Estimating time available for sensor fusion exception handling , 1995, Other Conferences.

[15]  G. T. Chavez,et al.  Exception handling for sensor fusion , 1993, Other Conferences.

[16]  Ian Horswill,et al.  Analysis of Adaptation and Environment , 1995, Artif. Intell..

[17]  Damian M. Lyons,et al.  Exploiting Patterns of Interaction to Achieve Reactive Behavior , 1995, Artif. Intell..

[18]  R. James Firby,et al.  An Investigation into Reactive Planning in Complex Domains , 1987, AAAI.

[19]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[20]  James L. Eilbert,et al.  Plan-behavior interaction in autonomous navigation , 1990 .

[21]  Tom Henderson,et al.  Logical sensor systems , 1984, J. Field Robotics.

[22]  E. Gat,et al.  Robot navigation by conditional sequencing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[23]  David J. Musliner,et al.  CIRCA: a cooperative intelligent real-time control architecture , 1993, IEEE Trans. Syst. Man Cybern..

[24]  George A. Bekey,et al.  A new IEEE journal for the age of automation , 1985, IEEE J. Robotics Autom..

[25]  Mohan M. Trivedi,et al.  Task planning and action coordination in integrated sensor-based robots , 1995, IEEE Trans. Syst. Man Cybern..