Modelling event-related responses in the brain

[1]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[2]  Ankoor S. Shah,et al.  Neural dynamics and the fundamental mechanisms of event-related brain potentials. , 2004, Cerebral cortex.

[3]  Manuel Schabus,et al.  Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. , 2004, Brain research. Cognitive brain research.

[4]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[5]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[6]  Karl J. Friston,et al.  Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics , 2003, Network.

[7]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[8]  Peter A Tass,et al.  Stochastic phase resetting of stimulus-locked responses of two coupled oscillators: transient response clustering, synchronization, and desynchronization. , 2003, Chaos.

[9]  Mircea Ariel Schoenfeld,et al.  A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory , 2003, NeuroImage.

[10]  B. Jansen,et al.  Phase synchronization of the ongoing EEG and auditory EP generation , 2003, Clinical Neurophysiology.

[11]  Karl J. Friston Functional integration and inference in the brain , 2002, Progress in Neurobiology.

[12]  Nicolas Brunel,et al.  Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons , 2002, Neural Computation.

[13]  James M Kilner,et al.  Event-related brain dynamics , 2002, Trends in Neurosciences.

[14]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[15]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[16]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[17]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[19]  M. Breakspear Nonlinear phase desynchronization in human electroencephalographic data , 2002, Human brain mapping.

[20]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[21]  John R. Terry,et al.  NONLINEAR INTERDEPENDENCE IN NEURAL SYSTEMS: MOTIVATION, THEORY, AND RELEVANCE , 2002, The International journal of neuroscience.

[22]  G Pfurtscheller,et al.  Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[23]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[24]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[25]  J. Martinerie,et al.  Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony , 2001, Journal of Neuroscience Methods.

[26]  Karl J. Friston,et al.  Zero-lag synchronous dynamics in triplets of interconnected cortical areas , 2001, Neural Networks.

[27]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[28]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J A Kelso,et al.  Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Karl J. Friston,et al.  Relating Macroscopic Measures of Brain Activity to Fast, Dynamic Neuronal Interactions , 2000, Neural Computation.

[31]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[32]  Karl J. Friston The labile brain. I. Neuronal transients and nonlinear coupling. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  Karl J. Friston,et al.  The labile brain. III. Transients and spatio-temporal receptive fields. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[35]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[36]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[37]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[38]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[39]  F. H. Lopes da Silva,et al.  Alpha rhythms: noise, dynamics and models. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[40]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[41]  Karl J. Friston Another Neural Code? , 1997, NeuroImage.

[42]  Juliana Yordanova,et al.  Analysis of phase-locking is informative for studying event-related EEG activity , 1997, Biological Cybernetics.

[43]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[44]  M. Rugg,et al.  Electrophysiology of Mind. , 1996 .

[45]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[46]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[47]  Perambur S. Neelakanta,et al.  Stochastical aspects of neuronal dynamics: Fokker-Planck approach , 1993, Biological Cybernetics.

[48]  G. Edelman Neural Darwinism: Selection and reentrant signaling in higher brain function , 1993, Neuron.

[49]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[50]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[51]  B. Baars,et al.  Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems , 2005 .

[52]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[53]  D. Tranchina,et al.  Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. , 2001, Network.

[54]  Richard M. Leahy,et al.  Electromagnetic brain mapping - IEEE Signal Processing Magazine , 2001 .

[55]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[56]  M. Coles,et al.  Event-related brain potentials: An introduction. , 1995 .

[57]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[58]  M. Abeles Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[59]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[60]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[61]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm , 1982 .

[62]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[63]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .

[64]  W. Freeman Models of the dynamics of neural populations. , 1978, Electroencephalography and clinical neurophysiology. Supplement.

[65]  Freeman Wj Models of the dynamics of neural populations. , 1978 .

[66]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.