Improvements in the melt and solid-state properties of poly(lactic acid), poly-3-hydroxyoctanoate and their blends through reactive modification

[1]  Marianna Kontopoulou,et al.  Dramatic Improvements in Strain Hardening and Crystallization Kinetics of PLA by Simple Reactive Modification in the Melt State , 2014 .

[2]  Ying Zhang,et al.  Crystallization of Coagent-Modified Polypropylene: Effect of Polymer Architecture and Cross-Linked Nanoparticles , 2014 .

[3]  P. J. Lemstra,et al.  In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator , 2014 .

[4]  J. Ramsay,et al.  Melt Compounded Blends of Short and Medium Chain-Length Poly-3-hydroxyalkanoates , 2014, Journal of Polymers and the Environment.

[5]  P. Ma,et al.  Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends , 2013 .

[6]  Chul B. Park,et al.  Crystallization and foaming of coagent-modified polypropylene: Nucleation effects of cross-linked nanoparticles , 2013 .

[7]  Wei Yu,et al.  The preparation and crystallization of long chain branching polylactide made by melt radicals reaction , 2013 .

[8]  Pj Piet Lemstra,et al.  Toughening of poly (lactic acid) by poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content , 2013 .

[9]  Balázs Imre,et al.  Compatibilization in bio-based and biodegradable polymer blends , 2013 .

[10]  S. Bateman,et al.  Foaming behaviour and cell structure of poly(lactic acid) after various modifications , 2013 .

[11]  P. Carreau,et al.  Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders , 2013 .

[12]  J. Ramsay,et al.  Determination of Mark-Houwink Parameters and Absolute Molecular Weight of Medium-Chain-Length Poly(3-Hydroxyalkanoates) , 2013, Journal of Polymers and the Environment.

[13]  P. Carreau,et al.  Effects of a Multifunctional Polymeric Chain Extender on the Properties of Polylactide and Polylactide/Clay Nanocomposites , 2012 .

[14]  J. Ramsay,et al.  Biosynthesis and properties of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. , 2012, Biomacromolecules.

[15]  W. Soetaert,et al.  Obtention and characterization of poly(3-hydroxybutyricacid-co-hydroxyvaleric acid)/mcl-PHA based blends , 2012 .

[16]  A. Chryss,et al.  Melt Strength and Rheological Properties of Biodegradable Poly(Lactic Aacid) Modified via Alkyl Radical-Based Reactive Extrusion Processes , 2012, Journal of Polymers and the Environment.

[17]  Pierre J. Carreau,et al.  Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders , 2012 .

[18]  M. Misra,et al.  Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene , 2012, Journal of Materials Science.

[19]  R. Malinowski,et al.  Influence of Dicumyl Peroxide Content on Thermal and Mechanical Properties of Polylactide , 2011 .

[20]  R. P. John,et al.  An overview of the recent developments in polylactide (PLA) research. , 2010, Bioresource technology.

[21]  Wei Yu,et al.  Long chain branching polylactide: Structures and properties , 2010 .

[22]  A. Janorkar,et al.  Poly(lactic acid) modifications , 2010 .

[23]  S. Mccarthy,et al.  Biodegradable Poly(lactic acid) Blends with Chemically Modified Polyhydroxyoctanoate Through Chain Extension , 2009 .

[24]  Chul B. Park,et al.  Microcellular Extrusion-Foaming of Polylactide with Chain-Extender , 2009 .

[25]  M. Balasubramanian,et al.  Reactive extrusion of poly(L‐lactic acid) with glycidol , 2009 .

[26]  M. Kontopoulou,et al.  Structure–rheology relationships of long-chain branched polypropylene: Comparative analysis of acrylic and allylic coagent chemistry , 2009 .

[27]  C. Wan,et al.  Toughening modification of PLLA/PBS blends via in situ compatibilization , 2009 .

[28]  Bikash Mohanty,et al.  Melt–solid polycondensation of lactic acid and its biodegradability , 2009 .

[29]  Wei Yang,et al.  Thermal and mechanical properties of chemical crosslinked polylactide (PLA) , 2008 .

[30]  S. Sengupta,et al.  Coagent-induced transformations of polypropylene microstructure: Evolution of bimodal architectures and cross-linked nano-particles , 2008 .

[31]  Christoph Michels,et al.  Dissolution and forming of cellulose with ionic liquids , 2008 .

[32]  M. Hillmyer,et al.  Block copolymers and melt blends of polylactide with Nodax microbial polyesters: preparation and mechanical properties. , 2007, Journal of biotechnology.

[33]  A. Mohanty,et al.  Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. , 2007, Biomacromolecules.

[34]  J. Ramsay,et al.  Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. , 2006, Journal of microbiological methods.

[35]  H. Hamada,et al.  The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends , 2006 .

[36]  Yanfeng Luo,et al.  Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[37]  A. E. Dowrey,et al.  Polymer alloys of Nodax copolymers and poly(lactic acid). , 2004, Macromolecular bioscience.

[38]  J. Morshedian,et al.  An investigation of chemical crosslinking effect on properties of high-density polyethylene , 2003 .

[39]  Chang-Sik Ha,et al.  Miscibility, properties, and biodegradability of microbial polyester containing blends , 2002 .

[40]  J. Asrar,et al.  Biosynthetic processes for linear polymers , 2002 .

[41]  A. Dufresne,et al.  Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate). , 2001, International journal of biological macromolecules.

[42]  Denise W. Carlson,et al.  Free radical branching of polylactide by reactive extrusion , 1998 .

[43]  E. Fukada,et al.  Piezoelectricity of biopolymers. , 1995, Biorheology.

[44]  B. Ramsay,et al.  Polymer blends containing poly(3-hydroxyalkanoate)s , 1994 .

[45]  R. Farris,et al.  Chemical modification of bacterial elastomers: 1. Peroxide crosslinking , 1994 .

[46]  R. Farris,et al.  Crystallization behavior and its influence on the mechanical properties of a thermoplastic elastomer produced by Pseudomonas oleovorans , 1992 .

[47]  Raman P. Patel,et al.  Morphology of elastomeric alloys , 1991 .