Focused and Synthetic Nested Sequents

Focusing is a general technique for transforming a sequent proof system into one with a syntactic separation of non-deterministic choices without sacrificing completeness. This not only improves proof search, but also has the representational benefit of distilling sequent proofs into synthetic normal forms. We show how to apply the focusing technique to nested sequent calculi, a generalization of ordinary sequent calculi to tree-like instead of list-like structures. We thus improve the reach of focusing to the most commonly studied modal logics, the logics of the modal S5 cube. Among our key contributions is a focused cut-elimination theorem for focused nested sequents.

[1]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[2]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[3]  Dale Miller,et al.  Canonical Sequent Proofs via Multi-Focusing , 2008, IFIP TCS.

[4]  Frank Pfenning,et al.  Imogen: Focusing the Polarized Inverse Method for Intuitionistic Propositional Logic , 2008, LPAR.

[5]  Dale Miller,et al.  A multi-focused proof system isomorphic to expansion proofs , 2016, J. Log. Comput..

[6]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[7]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[8]  Carsten Schürmann,et al.  Focused Natural Deduction , 2010, LPAR.

[9]  Melvin Fitting,et al.  Prefixed tableaus and nested sequents , 2012, Ann. Pure Appl. Log..

[10]  Robert J. Simmons,et al.  Structural Focalization , 2011, TOCL.

[11]  Frank Pfenning,et al.  Focus-preserving Embeddings of Substructural Logics in Intuitionistic Logic , 2010 .

[12]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[13]  Lutz Straßburger,et al.  Cut Elimination in Nested Sequents for Intuitionistic Modal Logics , 2013, FoSSaCS.

[14]  Kaustuv Chaudhuri Focusing Strategies in the Sequent Calculus of Synthetic Connectives , 2008, LPAR.

[15]  Francesca Poggiolesi,et al.  The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.

[16]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[17]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[18]  Frank Pfenning,et al.  A judgmental reconstruction of modal logic , 2001, Mathematical Structures in Computer Science.

[19]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[20]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[21]  Björn Lellmann,et al.  Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.

[22]  Chuck Liang,et al.  Focusing and polarization in linear, intuitionistic, and classical logics , 2009, Theor. Comput. Sci..

[23]  Elaine Pimentel,et al.  Proof Search in Nested Sequent Calculi , 2015, LPAR.

[24]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[25]  Noam Zeilberger,et al.  Focusing and higher-order abstract syntax , 2008, POPL '08.

[26]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[27]  Lutz Straßburger,et al.  The Focused Calculus of Structures , 2011, CSL.

[28]  Lutz Straßburger,et al.  Label-free Modular Systems for Classical and Intuitionistic Modal Logics , 2014, Advances in Modal Logic.

[29]  Frank Pfenning,et al.  A Logical Characterization of Forward and Backward Chaining in the Inverse Method , 2007, Journal of Automated Reasoning.

[30]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[31]  Dale Miller,et al.  Focused Labeled Proof Systems for Modal Logic , 2015, LPAR.