Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy

Google Earth (GE) has recently become the focus of increasing interest and popularity among available online virtual globes used in scientific research projects, due to the free and easily accessed satellite imagery provided with global coverage. Nevertheless, the uses of this service raises several research questions on the quality and uncertainty of spatial data (e.g. positional accuracy, precision, consistency), with implications for potential uses like data collection and validation. This paper aims to analyze the horizontal accuracy of very high resolution (VHR) GE images in the city of Rome (Italy) for the years 2007, 2011, and 2013. The evaluation was conducted by using both Global Positioning System ground truth data and cadastral photogrammetric vertex as independent check points. The validation process includes the comparison of histograms, graph plots, tests of normality, azimuthal direction errors, and the calculation of standard statistical parameters. The results show that GE VHR imageries of Rome have an overall positional accuracy close to 1 m, sufficient for deriving ground truth samples, measurements, and large-scale planimetric maps.

[1]  Barat Mojaradi,et al.  Combined rigorous-generic direct orthorectification procedure for IRS-p6 sensors , 2012 .

[2]  Manuel A. Aguilar,et al.  Geopositioning Accuracy Assessment of GeoEye-1 Panchromatic and Multispectral Imagery , 2012 .

[3]  Jan Nyssen,et al.  Transferring Google Earth observations to GIS-software: example from gully erosion study , 2013, Int. J. Digit. Earth.

[4]  Lu Guonian Development of Virtual Geographic Environments and the New Initiative in Experimental Geography , 2009 .

[5]  Huadong Guo,et al.  Next-generation Digital Earth , 2012, Proceedings of the National Academy of Sciences.

[6]  MICHAEL F. GOODCHILD,et al.  A Simple Positional Accuracy Measure for Linear Features , 1997, Int. J. Geogr. Inf. Sci..

[7]  Jiangfeng She,et al.  Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data , 2014 .

[8]  Jinwei Dong,et al.  A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA , 2012 .

[9]  Clemens Reimann,et al.  Statistical data analysis explained : applied environmental statics with R , 2008 .

[10]  P. Filzmoser,et al.  Statistical Data Analysis Explained , 2008 .

[11]  B. Yazici,et al.  A comparison of various tests of normality , 2007 .

[12]  Daniel A. Contreras,et al.  The Utility of Publicly-Available Satellite Imagery for Investigating Looting of Archaeological Sites in Jordan , 2010 .

[13]  J. Marais,et al.  Analysis and optimal use of GNSS pseudo-range delays in urban canyons , 2006, The Proceedings of the Multiconference on "Computational Engineering in Systems Applications".

[14]  Le Yu,et al.  Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives , 2012 .

[15]  Ronald E. McRoberts,et al.  The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area , 2010 .

[16]  Manuel A. Aguilar,et al.  Accuracy assessment of digital elevation models using a non‐parametric approach , 2007, Int. J. Geogr. Inf. Sci..

[17]  Gerard B. M. Heuvelink,et al.  Effect of DEM Uncertainty on the Positional Accuracy of Airborne Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[18]  E. Harp,et al.  Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth , 2009 .

[19]  Arthur P. Cracknell,et al.  Evaluation of MODIS gross primary productivity and land cover products for the humid tropics using oil palm trees in Peninsular Malaysia and Google Earth imagery , 2013 .

[20]  Michael Höhle,et al.  Accuracy assessment of digital elevation models by means of robust statistical methods , 2009 .

[21]  Gino Dardanelli,et al.  Analisi cartografica e GPS di punti fiduciali , 2011 .

[22]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[23]  Thierry Toutin,et al.  Review article: Geometric processing of remote sensing images: models, algorithms and methods , 2004 .

[24]  X. Tong,et al.  Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery , 2010 .

[25]  Jeffrey A. Cardille,et al.  Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo , 2011, Remote. Sens..

[26]  Andrew B. Johnson,et al.  Satellite imagery reveals new critical habitat for Endangered bird species in the high Andes of Peru , 2011 .

[27]  D. Pauly,et al.  Ground-truthing the ground-truth: reply to Garibaldi et al.'s comment on “Managing fisheries from space: Google Earth improves estimates of distant fish catches” , 2014 .

[28]  Andrés Caro,et al.  Positional Accuracy Analysis of Satellite Imagery by Circular Statistics , 2010 .

[29]  The Institute for the Protection and Security of the Citizen , 2022 .

[30]  Kay Simon,et al.  Guidelines for Best Practice and Quality Checking of Ortho Imagery , 2008 .

[31]  D. Civco,et al.  Mapping urban areas on a global scale: which of the eight maps now available is more accurate? , 2009 .

[32]  Aijun Chen,et al.  Visualization of A-Train vertical profiles using Google Earth , 2009, Comput. Geosci..

[33]  David T. Potere,et al.  Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive , 2008, Sensors.

[34]  Yansen Wang,et al.  Integration of Google Maps/Earth with microscale meteorology models and data visualization , 2013, Comput. Geosci..

[35]  Cutberto Uriel Paredes-Hernández,et al.  HORIZONTAL POSITIONAL ACCURACY OF GOOGLE EARTH’S IMAGERY OVER RURAL AREAS: A STUDY CASE IN TAMAULIPAS, MEXICO , 2013 .

[36]  Paul A. Zandbergen,et al.  Positional Accuracy of Spatial Data: Non‐Normal Distributions and a Critique of the National Standard for Spatial Data Accuracy , 2008, Trans. GIS.

[37]  B. W. Yap,et al.  Comparisons of various types of normality tests , 2011 .

[38]  C. Proisy,et al.  Assessing aboveground tropical forest biomass using Google Earth canopy images. , 2012, Ecological applications : a publication of the Ecological Society of America.

[39]  F. Fava,et al.  DEM extraction from archive aerial photos: accuracy assessment in areas of complex topography , 2013 .

[40]  Opez,et al.  SAMPLE SIZE AND CONFIDENCE WHEN APPLYING THE NSSDA , 2005 .

[41]  Michael F. Goodchild The Quality of Geospatial Context , 2009, QuaCon.

[42]  Hiromichi Nagao,et al.  Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models , 2010, Comput. Geosci..

[43]  Douglas W. Burbank,et al.  Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Googl , 2012 .

[44]  Manuel A. Aguilar,et al.  Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[45]  S. Hammer,et al.  International Journal of Health Geographics Combining Google Earth and Gis Mapping Technologies in a Dengue Surveillance System for Developing Countries , 2022 .

[46]  Sarah Taylor Lovell,et al.  Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth , 2012 .