Collective Structural Relaxation in Phase‐Change Memory Devices

DOI: 10.1002/aelm.201700627 capability is also appealing for emerging applications in non-von Neumann computing such as computational memory.[7– 11] It also facilitates applications in brain-inspired neuromorphic computing where PCM devices are used to emulate synaptic and neuronal behavior.[12–14] A key challenge in all these application domains is the temporal evolution of resistance levels commonly referred to as resistance drift.[15] These resistance variations are caused mostly by the phase-change material in the amorphous phase. At constant ambient temperature, the resistance typically exhibits a temporal dependence characterized by

[1]  Thomas P. Parnell,et al.  Temporal correlation detection using computational phase-change memory , 2017, Nature Communications.

[2]  Haralampos Pozidis,et al.  Phase-change memory: Feasibility of reliable multilevel-cell storage and retention at elevated temperatures , 2015, 2015 IEEE International Reliability Physics Symposium.

[3]  Martin Salinga,et al.  Role of activation energy in resistance drift of amorphous phase change materials , 2014, Front. Phys..

[4]  Lewis,et al.  Many-body nature of the Meyer-Neldel compensation law for diffusion. , 1995, Physical review letters.

[5]  Laurent Dellmann,et al.  Changes in electrical transport and density of states of phase change materials upon resistance drift , 2014 .

[6]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[7]  A. Knoll,et al.  Relaxation kinetics of nanoscale indents in a polymer glass. , 2009, Physical review letters.

[8]  Doris Kuhlmann Zur Theorie der Nachwirkungserscheinungen , 1948 .

[9]  M.R.J. Gibbs,et al.  Activation energy spectra and relaxation in amorphous materials , 1983 .

[10]  Daniel Krebs,et al.  Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells , 2016 .

[11]  Daniele Ielmini,et al.  Common signature of many-body thermal excitation in structural relaxation and crystallization of chalcogenide glasses , 2009 .

[12]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[13]  Haralampos Pozidis,et al.  Programming algorithms for multilevel phase-change memory , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[14]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[15]  Daniel Krebs,et al.  Subthreshold electrical transport in amorphous phase-change materials , 2015 .

[16]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[17]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[18]  Y. Mitrofanov,et al.  Determination of the activation energy spectrum of structural relaxation in metallic glasses using calorimetric and shear modulus relaxation data , 2014 .

[19]  J. L. Hartke The Three‐Dimensional Poole‐Frenkel Effect , 1968 .

[20]  Haralampos Pozidis,et al.  A collective relaxation model for resistance drift in phase change memory cells , 2015, 2015 IEEE International Reliability Physics Symposium.

[21]  M. Salinga,et al.  High-field electrical transport in amorphous phase-change materials , 2015 .

[22]  A. Pirovano,et al.  A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5 , 2009 .

[23]  Paolo Fantini,et al.  Three-dimensional Poole-Frenkel analytical model for carrier transport in amorphous chalcogenides , 2013 .

[24]  Haralampos Pozidis,et al.  Recent Progress in Phase-Change Memory Technology , 2016, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[25]  Alessandro Curioni,et al.  Reactive potential for the study of phase-change materials: GeTe , 2013 .

[26]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[27]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I: Experimental Study , 2009, IEEE Transactions on Electron Devices.

[28]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part II: Physics-Based Modeling , 2009, IEEE Transactions on Electron Devices.

[29]  Matthias Wuttig,et al.  Relation between bandgap and resistance drift in amorphous phase change materials , 2015, Scientific Reports.

[30]  M. Salinga,et al.  Impact of defect occupation on conduction in amorphous Ge2Sb2Te5 , 2016, Scientific Reports.

[31]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[32]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[33]  Masayuki Ieda,et al.  A Consideration of Poole‐Frenkel Effect on Electric Conduction in Insulators , 1971 .

[34]  Matthias Wuttig,et al.  Impact of DoS changes on resistance drift and threshold switching in amorphous phase change materials , 2012 .

[35]  D. Ielmini,et al.  Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories , 2011 .

[36]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[37]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[38]  P. Fantini,et al.  Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films , 2012 .

[39]  Jörg Behler,et al.  Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe , 2015 .

[40]  H.-S. Philip Wong,et al.  Phase-Change Memory—Towards a Storage-Class Memory , 2017, IEEE Transactions on Electron Devices.

[41]  Robert M. Hill,et al.  Poole-Frenkel conduction in amorphous solids , 1971 .

[42]  Henning Langberg,et al.  Differential Glucose Uptake in Quadriceps and Other Leg Muscles During One-Legged Dynamic Submaximal Knee-Extension Exercise , 2011, Front. Physio..

[43]  Alessandro Curioni,et al.  Structural origin of resistance drift in amorphous GeTe , 2016 .

[44]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[45]  Daniel Krebs,et al.  The influence of resistance drift on measurements of the activation energy of conduction for phase-change material in random access memory line cells , 2012 .

[46]  Andrea L. Lacaita,et al.  Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5 , 2008 .

[47]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[48]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .

[49]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[50]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.