Future Prospect of Nanoelectronic Devices

A significant approach to enhance information throughput beyond the traditional scaling is to integrate the best features of the current memories into a fabrication technology compatible with CMOS technology process with better scalability than SRAM and FLASH [1]. The fabrication technology should be applicable to both stand-alone and embedded memory applications. A major detractor of MPU ability to execute programs is the time delay needed for transferring data between the processor and memory. Such a fabrication technology can increase MPU cache memory which yields a much faster data processing. Furthermore, the development of high speed and high density random access nonvolatile memory is a great success in computer architecture.

[1]  Masamitsu Hayashi,et al.  Current driven dynamics of magnetic domain walls in permalloy nanowires , 2006 .

[2]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[3]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[4]  S. Maekawa,et al.  Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers , 2009 .

[5]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[6]  Effect of spin current on uniform ferromagnetism: domain nucleation. , 2005, Physical review letters.

[7]  Masaaki Tanaka Spintronics : recent progress and tomorrow's challenges , 2005 .

[8]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[9]  Michael E. Flatté,et al.  Theory of semiconductor magnetic bipolar transistors , 2003 .

[10]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical Review Letters.

[11]  G. A. Smolenskiǐ Ferroelectrics and related materials , 1984 .

[12]  Aidong Li,et al.  Characteristics of metal-ferroelectric-insulator-semiconductor structure using La-modified Bi 4 Ti 3 O 12 as the ferroelectric layer , 2003 .

[13]  Yan Li,et al.  High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay , 2008 .

[14]  Saroj P. Dash,et al.  Electrical creation of spin polarization in silicon at room temperature , 2009, Nature.

[15]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[16]  Yiran Chen,et al.  An overview of non-volatile memory technology and the implication for tools and architectures , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[17]  S. Parkin,et al.  Nonmonotonic bias voltage dependence of the magnetocurrent in GaAs-based magnetic tunnel transistors. , 2003, Physical review letters.

[18]  Konstantin K. Likharev,et al.  Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges , 2008 .

[19]  Rossiĭskai︠a︡ akademii︠a︡ nauk,et al.  Soviet physics. Semiconductors , 1967 .

[20]  D. Ielmini,et al.  Analytical Modeling of Chalcogenide Crystallization for PCM Data-Retention Extrapolation , 2007, IEEE Transactions on Electron Devices.

[21]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[22]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[23]  M. Donahue,et al.  Head To Head Domain Wall Structures In Thin Magnetic Stripes , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[24]  Hans Kuhn,et al.  Tunneling through Fatty Acid Salt Monolayers , 1971 .

[26]  Jing Guo,et al.  Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors , 2006 .

[27]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[28]  S.C. Rustagi,et al.  Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance , 2006, 2006 International Electron Devices Meeting.

[29]  S. Sugahara,et al.  A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain , 2004 .

[30]  H. Ishiwara,et al.  Electrical Properties of Metal-Ferroelectric-Insulator-Semiconductor (MFIS)- and Metal-Ferroelectric-Metal-Insulator-Semiconductor (MFMIS)-FETs Using Ferroelectric SrBi2Ta2O9 Film and SrTa2O6/SiON Buffer Layer , 2000 .

[31]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[32]  A. Pohm,et al.  Design of Curie point written magnetoresistance random access memory cells , 2003 .

[33]  Hartmut Zabel,et al.  Progress in Spintronics , 2009 .

[34]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[35]  Craig S. Lent,et al.  Role of correlation in the operation of quantum-dot cellular automata , 2001 .

[36]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[37]  N. Sakimura,et al.  MRAM Cell Technology for Over 500-MHz SoC , 2007, IEEE Journal of Solid-State Circuits.

[38]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[39]  Andrea L. Lacaita,et al.  Status and challenges of phase change memory modeling , 2008 .

[40]  George Kioseoglou,et al.  Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact , 2007 .

[41]  D. Ielmini,et al.  Electrical characterization of anomalous cells in phase change memory arrays , 2006, 2006 International Electron Devices Meeting.

[42]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[43]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[44]  Konstantin K. Likharev,et al.  Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions , 1991 .

[45]  Mark Bohr,et al.  The new era of scaling in an SoC world , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[46]  An Chen Ionic memories: Status and challenges , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[47]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[48]  Dieny,et al.  Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor. , 1995, Physical review letters.

[49]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[50]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[51]  T. Hiramoto,et al.  Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic series resistance , 2002 .

[52]  T. Hiramoto,et al.  Impact of quantum mechanical effects on design of nano-scale narrow channel n- and p-type MOSFETs , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[53]  T. Khoa,et al.  Retention and Read Endurance Characteristics of a Ferroelectric Gate Field Effect Transistor Memory with an Intermediate Electrode , 2004 .

[54]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[55]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[56]  Shunsuke Fukami,et al.  Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy , 2008 .

[57]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[58]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[59]  R. A. Webb,et al.  Mesoscopic phenomena in solids , 1991 .

[60]  K. B. Blodgett Films Built by Depositing Successive Monomolecular Layers on a Solid Surface , 1935 .

[61]  R. W. Dave,et al.  A 4-Mb toggle MRAM based on a novel bit and switching method , 2005, IEEE Transactions on Magnetics.

[62]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[63]  Z. Diao,et al.  Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory , 2007 .

[64]  K. Fukui,et al.  The Science and Technology of Carbon Nanotubes , 1999 .

[65]  Jian-Gang Zhu,et al.  Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability , 2008, Proceedings of the IEEE.

[66]  Jonathan Z. Sun Current-driven magnetic switching in manganite trilayer junctions , 1999 .

[67]  Rainer Waser,et al.  Current status and challenges of ferroelectric memory devices , 2005 .

[68]  A. Pirovano,et al.  Electronic switching effect and phase-change transition in chalcogenide materials , 2004, IEEE Electron Device Letters.

[69]  Satoshi Sugahara,et al.  A spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) with a ferromagnetic semiconductor for the channel , 2005 .

[70]  Gurney,et al.  Giant magnetoresistive in soft ferromagnetic multilayers. , 1991, Physical review. B, Condensed matter.

[71]  T. Tseng,et al.  Current status of resistive nonvolatile memories , 2008 .

[72]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[73]  M. Hara,et al.  Controlled depinning of domain walls in a ferromagnetic ring circuit , 2007 .

[74]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[75]  Jagadeesh S. Moodera,et al.  Ferromagnetic-insulator-ferromagnetic tunneling: Spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited) , 1996 .

[76]  Ken Takeuchi,et al.  Ferroelectric(Fe)-NAND flash memory with non-volatile page buffer for data center application enterprise Solid-State Drives (SSD) , 2009, 2009 Symposium on VLSI Circuits.

[77]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[78]  Dmytro Apalkov,et al.  Spin-transfer switching in MgO-based magnetic tunnel junctions , 2006 .

[79]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[80]  Modelling for semiconductor spintronics , 2005, cond-mat/0504001.

[81]  Mark A. Reed and Takhee Lee,et al.  Molecular Nanoelectronics , 2003 .

[82]  M. Moneck,et al.  Spin Transfer Torque in Deep Submicron Annular CPP-GMR Devices , 2008, IEEE Transactions on Magnetics.

[83]  L. Berger,et al.  Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films , 1984 .

[84]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[85]  C. Rettner,et al.  Current-Controlled Magnetic Domain-Wall Nanowire Shift Register , 2008, Science.

[86]  Tso-Ping Ma,et al.  Ferroelectric DRAM (FEDRAM) FET with metal/SrBi/sub 2/Ta/sub 2/O/sub 9//SiN/Si gate structure , 2002 .

[87]  R. Jansen,et al.  The spin-valve transistor: a preview and outlook , 2003 .

[88]  M. Johnson,et al.  Bipolar Spin Switch , 1993, Science.

[89]  Dmytro Apalkov,et al.  Spin-transfer switching in MgO magnetic tunnel junction nanostructures , 2006 .

[90]  N. Vallepalli,et al.  SRAM design on 65nm CMOS technology with integrated leakage reduction scheme , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[91]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[92]  Supriyo Bandyopadhyay,et al.  Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits , 2009, Nanotechnology.

[93]  Ono,et al.  Propagation of a magnetic domain wall in a submicrometer magnetic wire , 1999, Science.

[94]  A D Kent,et al.  Annular Spin-Transfer Memory Element , 2009, IEEE Transactions on Nanotechnology.

[95]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[96]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[97]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[98]  Hiroshi Ishiwara,et al.  Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors , 2009 .

[99]  Burkard Hillebrands,et al.  Spin Dynamics in Confined Magnetic Structures III , 2002 .

[100]  Tomoaki Inokuchi,et al.  Read/write operation of spin-based MOSFET using highly spin-polarized ferromagnet/MgO tunnel barrier for reconfigurable logic devices , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[101]  Suman Datta,et al.  III-V field-effect transistors for low power digital logic applications , 2007 .

[102]  Donald R. Lampe,et al.  Integration of ferroelectric thin films into nonvolatile memories , 1992 .

[103]  J. Zhu,et al.  Characteristics of AP bias in spin valve memory elements , 1998 .

[104]  B. Dieny,et al.  Analytical investigation of spin transfer dynamics using a perpendicular-to-plane polarizer , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[105]  Ricardo Sousa,et al.  Non-volatile magnetic random access memories (MRAM) , 2005 .

[106]  Naijuan Wu,et al.  Resistance switching in perovskite thin films , 2006 .

[107]  Zhenan Bao,et al.  Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[108]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[109]  Current-induced distortion of a magnetic domain wall , 2003, cond-mat/0301293.

[110]  Daisaburo Takashima,et al.  High-density chain ferroelectric random access memory (chain FRAM) , 1997 .

[111]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[112]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[113]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[114]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[115]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[116]  William H. Rippard,et al.  Materials dependence of the spin-momentum transfer efficiency and critical current in ferromagnetic metal/Cu multilayers , 2003 .

[117]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[118]  Theory of spin-polarized bipolar transport in magnetic p-n junctions , 2002, cond-mat/0205340.

[119]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[120]  Y. Yao,et al.  Spin-valve transistor , 2005 .

[121]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[122]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[123]  Tohru Ozaki,et al.  A 1.6 GB/s DDR2 128 Mb Chain FeRAM With Scalable Octal Bitline and Sensing Schemes , 2010, IEEE Journal of Solid-State Circuits.

[124]  Ming-Jinn Tsai,et al.  Reduction in critical current density for spin torque transfer switching with composite free layer , 2008 .

[125]  S. Sarma,et al.  Spin electronics and spin computation , 2001, cond-mat/0105247.

[126]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[127]  D. Zou,et al.  Spin-valve and pseudo-spin-valve device switching for giant magnetoresistive random access memory applications , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[128]  Stuart S P Parkin,et al.  Data in the fast lanes of racetrack memory. , 2009, Scientific American.

[129]  H. Ohno,et al.  Magnetic Tunnel Junctions for Spintronic Memories and Beyond , 2007, IEEE Transactions on Electron Devices.

[130]  T. Ma,et al.  Ferroelectric DRAM (FEDRAM) FET With Metal/SrBi Ta O /SiN/Si Gate Structure , 2002 .

[131]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[132]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[133]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[134]  J. Slonczewski Currents, torques, and polarization factors in magnetic tunnel junctions , 2004, cond-mat/0404210.

[135]  Gerhard Klimeck,et al.  Bandstructure Effects in Silicon Nanowire Electron Transport , 2007, IEEE Transactions on Electron Devices.

[136]  J. Lodder,et al.  Room temperature-operating spin-valve transistors formed by vacuum bonding , 1998, Science.

[137]  Igor Zutic,et al.  Magnetic bipolar transistor , 2004 .

[138]  Mark S. Lundstrom,et al.  Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green’s function approach with spin relaxation , 2008, 0807.1709.

[139]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[140]  Walter Riess,et al.  Vertical surround-gated silicon nanowire impact ionization field-effect transistors , 2007 .

[141]  A. Omair,et al.  A 4-Mb 0.18-/spl mu/m 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers , 2005, IEEE Journal of Solid-State Circuits.

[142]  H. Ishiwara,et al.  Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FETs using PLZT/STO/Si(100) structures , 1997, IEEE Electron Device Letters.

[143]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[144]  B. Dieny,et al.  Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions , 2004, IEEE Transactions on Magnetics.

[145]  S. Fukami,et al.  Scalable Cell Technology Utilizing Domain Wall Motion for High-speed MRAM , 2007, 2007 IEEE Symposium on VLSI Technology.

[146]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[147]  Xiaolong Wu,et al.  Non-volatile Memory Devices Based on Chalcogenide Materials , 2009, 2009 Sixth International Conference on Information Technology: New Generations.

[148]  L. C. Castro,et al.  Electrostatics of partially gated carbon nanotube FETs , 2004, IEEE Transactions on Nanotechnology.

[149]  J. Schliemann,et al.  Nonballistic spin-field-effect transistor. , 2002, Physical review letters.

[150]  R. S. Beech,et al.  Magnetic field sensors using GMR multilayer , 1994 .

[151]  Shibing Long,et al.  Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide , 2007 .

[152]  Masaaki Tanaka,et al.  Spin-dependent transport properties in GaMnAs-based spin hot-carrier transistors , 2007, cond-mat/0702239.

[153]  S. Urazhdin,et al.  Effect of antiferromagnetic interlayer coupling on current-assisted magnetization switching , 2003 .

[154]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[155]  Jörg Appenzeller,et al.  Carbon Nanotubes for High-Performance Electronics—Progress and Prospect , 2008, Proceedings of the IEEE.

[156]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[157]  Koichi Mizushima,et al.  Energy-dependent hot electron transport across a spin-valve , 1997 .

[158]  Yan Li,et al.  Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. , 2008, Nano letters.

[159]  Hiroyuki Tanaka,et al.  Overview and Future Challenge of Ferroelectric Random Access Memory Technologies , 2007 .

[160]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[161]  X. Bai,et al.  Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. , 2009, Nano letters.

[162]  D. Allara,et al.  Adventures in molecular electronics: how to attach wires to molecules , 2003 .

[163]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[164]  A. V. Pohm,et al.  Pseudo spin valve magnetoresistive random access memory , 1998 .

[165]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[166]  Rainer Waser,et al.  Advanced circuit design of gigabit density ferroelectric random access memories , 2002 .

[167]  B. Johnson,et al.  Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology , 2004 .

[168]  P. D. Ye,et al.  Top-gated graphene field-effect-transistors formed by decomposition of SiC , 2008, 0802.4103.

[169]  H. Wong,et al.  Impact of a Process Variation on Nanowire and Nanotube Device Performance , 2007, IEEE Transactions on Electron Devices.

[170]  Dominique Vuillaume,et al.  Molecular-scale electronics , 2008 .

[171]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[172]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[173]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[174]  P. P. Freitas,et al.  Low-current blocking temperature writing of double barrier magnetic random access memory cells , 2004 .

[175]  M. Kozicki,et al.  Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes , 2005, Symposium Non-Volatile Memory Technology 2005..

[176]  R. Winkler,et al.  Anomalous Rashba spin splitting in two-dimensional hole systems , 2001, cond-mat/0106246.

[177]  Y.J. Song,et al.  Two-bit cell operation in diode-switch phase change memory cells with 90nm technology , 2008, 2008 Symposium on VLSI Technology.

[178]  H. T. Jonkman,et al.  Electronic spin transport in graphene field-effect transistors , 2009, 0908.1039.

[179]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[180]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[181]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[182]  Y. Sasago,et al.  Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode , 2006, 2009 Symposium on VLSI Technology.

[183]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[184]  William J. Gallagher,et al.  Microstructured magnetic tunnel junctions (invited) , 1997 .

[185]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[186]  B. Prince Trends in scaled and nanotechnology memories , 2005, Symposium Non-Volatile Memory Technology 2005..

[187]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[188]  Sasago Yoshitaka,et al.  Cross-Point phase change memory with 4F2 cell size driven by low-contact resistivity poly-si diode , 2009 .

[189]  H. Ishiwara,et al.  Current status and prospects of FET-type ferroelectric memories , 1999, 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393).

[190]  Yu Lu,et al.  Memories of tomorrow , 2002 .

[191]  J. Krieger Physical concepts of memory device operation based on piezoacousto and pyroelectric properties of ferroelectric films , 2009 .

[192]  C. Muller,et al.  Experimental observation of the transition from weak link to tunnel junction , 1992 .

[193]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[194]  MgO-based double barrier magnetic tunnel junctions with thin free layers , 2009 .

[195]  Zahid A. K. Durrani,et al.  Room temperature nanocrystalline silicon single-electron transistors , 2003 .

[196]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[197]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[198]  Hyun Cheol Koo,et al.  Control of Spin Precession in a Spin-Injected Field Effect Transistor , 2009, Science.

[199]  Heike Riel,et al.  A Single-Molecule Switch and Memory Element , 2007 .

[200]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[201]  Paul J. McWhorter,et al.  Physics of the ferroelectric nonvolatile memory field effect transistor , 1992 .

[202]  R. T. Phillips,et al.  STRUCTURE OF THE OPTICAL PHASE CHANGE MEMORY ALLOY, AG-V-IN-SB-TE, DETERMINED BY OPTICAL SPECTROSCOPY AND ELECTRON DIFFRACTION , 1997 .

[203]  J. Tour,et al.  Fabrication and Characterization of Interconnected Nanowell Molecular Electronic Devices in Crossbar Architecture , 2009, IEEE Transactions on Nanotechnology.

[204]  J. Gregg,et al.  Spin electronics—a review , 2002 .

[205]  D. Ielmini,et al.  Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[206]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[207]  Hermann Kohlstedt,et al.  Magnetic tunnel junction on a ferroelectric substrate , 2009 .

[208]  Y. Nishi,et al.  Copper sulfide-based resistance change memory , 2007, 2007 Non-Volatile Memory Technology Symposium.

[209]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[210]  Jaroslav Fabian,et al.  Spin injection and detection in silicon. , 2006, Physical review letters.

[211]  N. Tezuka,et al.  Distinctive current-induced magnetization switching in a current-perpendicular-to-plane giant-magnetoresistance nanopillar with a synthetic antiferromagnet free layer , 2005 .

[212]  J. Lee,et al.  Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor capacitors for nonvolatile memory applications , 2006 .

[213]  Michael S. Fuhrer,et al.  A path to spin logic , 2005 .

[214]  Z. Diao,et al.  Spin transfer switching in dual MgO magnetic tunnel junctions , 2007 .

[215]  George Bourianoff,et al.  Boolean Logic and Alternative Information-Processing Devices , 2008, Computer.

[216]  Byung-Eun Park,et al.  Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors , 2004 .

[217]  L. Goux,et al.  Transient Characteristics of the Reset Programming of a Phase-Change Line Cell and the Effect of the Reset Parameters on the Obtained State , 2009, IEEE Transactions on Electron Devices.

[218]  J. M. Daughton,et al.  Magnetic Tunneling Applied to Memory (Invited) , 1997 .

[219]  M. Tanaka,et al.  MOS-Based Spin Devices for Reconfigurable Logic , 2007, IEEE Transactions on Electron Devices.

[220]  K. W. Hipps It's All About Contacts , 2001, Science.

[221]  D. Ielmini,et al.  Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part I: Monte Carlo Model for Crystallization and Percolation , 2006, IEEE Transactions on Electron Devices.

[222]  G Varga Investigation of possibility of high temperature quantum-dot cellular automata , 2007 .

[223]  D. Ielmini,et al.  Size-Dependent Retention Time in NiO-Based Resistive-Switching Memories , 2010, IEEE Electron Device Letters.

[224]  J. Lodder,et al.  Low-field magnetocurrent above 200% in a spin-valve transistor at room temperature , 2000 .

[225]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[226]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[227]  K. Wakabayashi Electronic transport properties of nanographite ribbon junctions , 2001 .

[228]  Z. Diao,et al.  Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers , 2005, cond-mat/0510204.

[229]  B. Ulrich,et al.  One transistor ferroelectric memory with Pt/Pb/sub 5/Ge/sub 3/O/sub 11//Ir/poly-Si/SiO/sub 2//Si gate-stack , 2002, IEEE Electron Device Letters.

[230]  W. Porod,et al.  Quantum-dot cellular automata: Review and recent experiments (invited) , 1999 .

[231]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[232]  Hiroshi Kano,et al.  Thermal activation effect on spin transfer switching in magnetic tunnel junctions , 2005 .

[233]  Koji Ando,et al.  Seeking Room-Temperature Ferromagnetic Semiconductors , 2006, Science.

[234]  Supriyo Bandyopadhyay Analysis of the Two Dimensional Datta-Das Spin Field Effect Transistor , 2010, 1001.2705.

[235]  M. Flatté Solid-state physics: Silicon spintronics warms up , 2009, Nature.

[236]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[237]  M. Mitkova,et al.  Nonvolatile memory based on solid electrolytes , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference.

[238]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[239]  J. Kim,et al.  Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology , 2006, 2006 International Electron Devices Meeting.

[240]  H. Meng,et al.  Spin transfer in nanomagnetic devices with perpendicular anisotropy , 2006 .

[241]  Determination of interface atomic structure and its impact on spin transport using Z-contrast microscopy and density-functional theory. , 2006, Physical review letters.

[242]  Shoji Ikeda,et al.  Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer , 2006 .

[243]  K. B. Blodgett,et al.  MONOMOLECULAR FILMS OF FATTY ACIDS ON GLASS , 1934 .

[244]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[245]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[246]  Mike Cooke Digital III-Vs review , 2006 .

[247]  Hiroshi Ishiwara,et al.  Current Status of Ferroelectric Random-Access Memory , 2004 .

[248]  Xiao Wei Sun,et al.  Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. , 2009, ACS nano.

[249]  Yan Li,et al.  Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits , 2007 .

[250]  H. Ishiwara,et al.  Nonvolatile ferroelectric-gate field-effect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures , 1999 .

[251]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[252]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[253]  S. Sakaia,et al.  Highly Scalable Fe(Ferroelectric)-NAND Cell with MFIS(Metal-Ferroelectric-Insulator-Semiconductor) Structure for Sub-10nm Tera-Bit Capacity NAND Flash Memories , 2008, 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design.

[254]  L. Smart,et al.  Solid State Chemistry: An Introduction, Third Edition , 1995 .

[255]  M. E. Flatte,et al.  Unipolar spin diodes and transistors , 2001 .

[256]  I. Langmuir The mechanism of the surface phenomena of flotation , 1920 .

[257]  H. Ishiwara,et al.  Fabrication and Characterization of (Bi,La)4Ti3O12 Films Using LaAlO3 Buffer Layers for MFIS Structures , 2004 .

[258]  Edward Grochowski,et al.  Technological impact of magnetic hard disk drives on storage systems , 2003, IBM Syst. J..

[259]  Takashi Nakamura,et al.  Properties of Ferroelectric Memory FET Using Sr2(Ta, Nb)2O7 Thin Film , 1998 .

[260]  A. V. Pohm,et al.  Thermal noise limitations to 2×20‐μm2 magnetoresistive memory element thresholds , 1988 .

[261]  Yiming Huai,et al.  Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects , 2008 .

[262]  Dekan der Mathematisch-Naturwissenschaftlichen,et al.  Self-Assembly and Electronic Properties of Conjugated Molecules: Towards Mono-Molecular Electronics , 2005 .

[263]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[264]  Y. Huai,et al.  Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions , 2004, cond-mat/0504486.

[265]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[266]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[267]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[268]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[269]  B. Ryu,et al.  Observation of Single Electron Tunneling and Ballistic Transport in Twin Silicon Nanowire MOSFETs (TSNWFETs) Fabricated by Top-Down CMOS Process , 2006, 2006 International Electron Devices Meeting.

[270]  Konstantin K. Likharev,et al.  Neuromorphic architectures for nanoelectronic circuits , 2004, Int. J. Circuit Theory Appl..

[271]  Seung H. Kang,et al.  Inherent spin transfer torque driven switching current fluctuations in magnetic element with in-plane magnetization and comparison to perpendicular design , 2009 .

[272]  Germanium Source and Drain Stressors for Ultrathin-Body and Nanowire Field-Effect Transistors , 2008, IEEE Electron Device Letters.

[273]  Rajesh Kumar,et al.  A family of 45nm IA processors , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[274]  Critical current density for spin transfer torque switching with composite free layer structure , 2009, 0909.2711.

[275]  Jian-Gang Zhu,et al.  The Micromagnetics of Magnetoresistive Random Access Memory , 2002 .

[276]  S. Takahashi,et al.  Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[277]  Kay Yakushiji,et al.  Spin-polarized current-induced magnetization reversal in perpendicularly magnetized L10-FePt layers , 2006 .

[278]  D. Ralph,et al.  Coupling of spin and orbital motion of electrons in carbon nanotubes , 2008, Nature.

[279]  J. Lodder,et al.  300% magnetocurrent in a room temperature operating spin-valve transistor , 2001 .

[280]  Hiroshi Inokawa,et al.  Manipulation and detection of single electrons for future information processing , 2005 .

[281]  M. Kund,et al.  A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node , 2007, 2007 IEEE International Electron Devices Meeting.

[282]  N. Gergel-Hackett,et al.  The Integration of Molecular Electronic Devices with Traditional CMOS Technologies , 2008, 2008 8th IEEE Conference on Nanotechnology.

[283]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[284]  X. Cartoixà,et al.  A resonant spin lifetime transistor , 2003 .

[285]  Ian Appelbaum,et al.  Electronic measurement and control of spin transport in silicon , 2007, Nature.

[286]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[287]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[288]  Z. Li,et al.  Thermally assisted magnetization reversal in the presence of a spin-transfer torque , 2003 .

[289]  Shunsuke Fukami,et al.  Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy , 2008 .

[290]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[291]  M. Reed,et al.  Molecular Electronic Devices , 2003 .

[292]  Serge Luryi,et al.  Future Trends in Microelectronics , 1996 .

[293]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[294]  S. Fukami,et al.  Low-current perpendicular domain wall motion cell for scalable high-speed MRAM , 2006, 2009 Symposium on VLSI Technology.

[295]  T. Ma,et al.  SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer , 1998 .

[296]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[297]  L. K. Teles,et al.  Spin Transistors vs. Conventional Transistors: What Are the Benefits? , 2009 .

[298]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[299]  K. W. Kim,et al.  Spin field effect transistor with a graphene channel , 2007 .

[300]  S. Fukami,et al.  Reduction of critical current density for domain wall motion in U-shaped magnetic patterns , 2008 .

[301]  L. Barsanti,et al.  Molecular Electronics: Bio-sensors and Bio-computers , 2003 .

[302]  Luc Thomas,et al.  Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. , 2007, Physical review letters.

[303]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[304]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[305]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[306]  S. Hsu,et al.  One Transistor Ferroelectric Memory Devices with Improved Retention Characteristics , 2002 .

[307]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[308]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[309]  Jing Guo,et al.  Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material , 2009, 0912.2140.

[310]  G. A. Prinz,et al.  Ultrahigh density vertical magnetoresistive random access memory (invited) , 2000 .

[311]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[312]  Luping Shi,et al.  Parasitic capacitance effect on programming performance of phase change random access memory devices , 2010 .

[313]  D. Awschalom,et al.  Semiconductor spintronics and quantum computation , 2002 .

[314]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[315]  James C. Ellenbogen,et al.  A Brief Overview of Nanoelectronic Devices , 1998 .

[316]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[317]  Roger Hilsen Koch,et al.  Batch-fabricated spin-injection magnetic switches , 2002 .

[318]  K. Xia,et al.  An all-metallic logic gate based on current-driven domain wall motion. , 2008, Nature nanotechnology.

[319]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[320]  A. Fert,et al.  Spin-polarized current induced switching in Co/Cu/Co pillars , 2001 .

[321]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[322]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[323]  J. Jameson,et al.  Recent Progress in Resistance Change Memory , 2008, 2008 Device Research Conference.

[324]  S.Y. Lee,et al.  Highly reliable and mass-productive FRAM embedded smartcard using advanced integration technologies , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[325]  W. K. Chan,et al.  Field effect in epitaxial graphene on a silicon carbide substrate , 2007 .

[326]  Sung-Min Yoon,et al.  Device characterization and Febrication Issues for Ferroelectric Gate Field Effect Transistor Device , 2002 .

[327]  Johnson,et al.  Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. , 1985, Physical review letters.

[328]  Masaaki Tanaka,et al.  Spin MOSFETs as a basis for spintronics , 2006, TOS.

[329]  S.Y. Kim,et al.  An endurance-free ferroelectric random access memory as a non-volatile RAM , 2008, 2008 Symposium on VLSI Technology.

[330]  Ute Drechsler,et al.  Transition-metal-oxide-based resistance-change memories , 2008, IBM J. Res. Dev..

[331]  Yu Huang,et al.  High‐Performance Top‐Gated Graphene‐Nanoribbon Transistors Using Zirconium Oxide Nanowires as High‐Dielectric‐Constant Gate Dielectrics , 2010, Advanced materials.

[332]  Jian-Gang Zhu,et al.  A vertical MRAM free of write disturbance , 2003 .

[333]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[334]  S. Hudgens,et al.  The future of phase-change semiconductor memory devices , 2008 .

[335]  M. Dresselhaus Carbon nanotubes , 1995 .

[336]  Distinction and correlation between magnetization switchings driven by spin transfer torque and applied magnetic field , 2009 .

[337]  Dmitri B. Strukov,et al.  Hybrid Semiconductor-Molecular Integrated Circuits for Digital Electronics: CMOL Approach , 2008 .

[338]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[339]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[340]  J. Coey Materials for Spin Electronics , 2001 .

[341]  J. Zhu,et al.  Micromagnetic principles in pseudo spin valve memory element design , 1997 .

[342]  J. Zhu,et al.  Spin Torque and Field-Driven Perpendicular MRAM Designs Scalable to Multi-Gb/Chip Capacity , 2006, IEEE Transactions on Magnetics.

[343]  S. S. Eaton,et al.  A Ferroelectric Nonvolatile Memory , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[344]  Saied N. Tehrani,et al.  High density submicron magnetoresistive random access memory (invited) , 1999 .

[345]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[346]  Z. Diao,et al.  Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures , 2005 .

[347]  Nevill Francis Mott,et al.  The Electrical Conductivity of Transition Metals , 1936 .

[348]  S. Sakai,et al.  Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance , 2004, IEEE Electron Device Letters.

[349]  H. Ohno,et al.  Semiconductor spintronics , 2002 .

[350]  Anatoli Korkin,et al.  Nano and Giga Challenges in Microelectronics , 2003 .

[351]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[352]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[353]  Shigeki Sakai,et al.  Self-Aligned-Gate Metal/Ferroelectric/Insulator/Semiconductor Field-Effect Transistors with Long Memory Retention , 2005 .

[354]  J.Y. Lee,et al.  A New Metal–Ferroelectric$(hboxPbZr_0.53hboxTi_0.47hboxO_3)$–Insulator$(hboxDy_2hboxO_3)$–Semiconductor (MFIS) FET for Nonvolatile Memory Applications , 2006, IEEE Electron Device Letters.

[355]  Gerhard Müller,et al.  A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control , 2007, IEEE Journal of Solid-State Circuits.

[356]  E. Rashba Semiconductor Spintronics: Progress and Challenges , 2006, cond-mat/0611194.

[357]  Dmitri E. Nikonov,et al.  Analysis of graphene nanoribbons as a channel material for field-effect transistors , 2006 .

[358]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[359]  Gang Xiong,et al.  Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure , 2003, Nature materials.

[360]  Jian-Gang Zhu,et al.  Spin valve and dual spin valve heads with synthetic antiferromagnets , 1999 .

[361]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.