SnapFind: brute force interactive image retrieval

SnapFind is an image retrieval system that enables efficient interactive search of large data sets by exploiting active disk technology. In contrast to earlier approaches, where data is typically pre-indexed for efficient retrieval according to a fixed scheme, SnapFind provides users with the flexibility to search non-indexed data in a brute force manner. The query is translated into a customized searchlet that is executed in parallel by processors near the storage devices. This enables the majority of irrelevant images to be discarded where they are stored. Partial results are displayed during search execution allowing users to interactively refine the query without waiting for search termination. This paper argues that algorithms with user-adjustable parameters are preferable to black-box image retrieval techniques.

[1]  J. Birch,et al.  Interactive Data Analysis , 1978 .

[2]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[3]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[4]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[5]  Rosalind W. Picard,et al.  Interactive Learning Using a "Society of Models" , 2017, CVPR 1996.

[6]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[7]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[8]  David A. Patterson,et al.  A case for intelligent disks (IDISKs) , 1998, SGMD.

[9]  Christos Faloutsos,et al.  Active Storage for Large-Scale Data Mining and Multimedia , 1998, VLDB.

[10]  Peter J. Haas,et al.  Interactive data Analysis: The Control Project , 1999, Computer.

[11]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[15]  James Ze Wang Integrated Region-Based Image Retrieval , 2001, The Information Retrieval Series.

[16]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[17]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[18]  Hai Jin,et al.  Active Disks: Programming Model, Algorithms and Evaluation , 2002 .

[19]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[21]  Roger Weber,et al.  Efficient region-based image retrieval , 2003, CIKM '03.

[22]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[23]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[24]  Mahadev Satyanarayanan,et al.  Diamond: A Storage Architecture for Early Discard in Interactive Search , 2004, FAST.

[25]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.