Lessons from Speciation Dynamics: How to Generate Selective Pressure Towards Diversity

Recent approaches in evolutionary robotics (ER) propose to generate behavioral diversity in order to evolve desired behaviors more easily. These approaches require the definition of a behavioral distance, which often includes task-specific features and hence a priori knowledge. Alternative methods, which do not explicitly force selective pressure towards diversity (SPTD) but still generate it, are known from the field of artificial life, such as in artificial ecologies (AEs). In this study, we investigate how SPTD is generated without task-specific behavioral features or other forms of a priori knowledge and detect how methods of generating SPTD can be transferred from the domain of AE to ER. A promising finding is that in both types of systems, in systems from ER that generate behavioral diversity and also in the investigated speciation model, selective pressure is generated towards unpopulated regions of search space. In a simple case study we investigate the practical implications of these findings and point to options for transferring the idea of self-organizing SPTD in AEs to the domain of ER.

[1]  Stéphane Doncieux,et al.  Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study , 2012, Evolutionary Computation.

[2]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[3]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[4]  Jürgen Schmidhuber,et al.  Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts , 2005 .

[5]  Shimon Whiteson,et al.  Critical factors in the performance of novelty search , 2011, GECCO '11.

[6]  Peter Krcah Solving deceptive tasks in robot body-brain co-evolution by searching for behavioral novelty , 2010, ISDA 2010.

[7]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[8]  Thomas Schmickl,et al.  Bubbleworld.Evo: Artificial Evolution of Behavioral Decisions in a Simulated Predator-Prey Ecosystem , 2006, SAB.

[9]  Stefano Nolfi,et al.  Co-evolving predator and prey robots , 2012, Adapt. Behav..

[10]  D. Floreano,et al.  Adaptive Behavior in Competing Co-Evolving Species , 2000 .

[11]  Mark Woehrer,et al.  Sexual Selection, Resource Distribution, and Population Size in Synthetic Sympatric Speciation , 2012, ALIFE.

[12]  Kenneth O. Stanley,et al.  Improving evolvability through novelty search and self-adaptation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[13]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[14]  J. Stradner,et al.  On-line, On-board Evolution of Reaction-Diffusion Control for Self-Adaptation , 2012 .

[15]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[16]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[17]  Alicia M. Frame,et al.  Magic traits in speciation: 'magic' but not rare? , 2011, Trends in ecology & evolution.

[18]  M. Pagel,et al.  Phylogenies reveal new interpretation of speciation and the Red Queen , 2010, Nature.

[19]  Kenneth O. Stanley,et al.  Exploiting Open-Endedness to Solve Problems Through the Search for Novelty , 2008, ALIFE.

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  N. Packard,et al.  A classification of long-term evolutionary dynamics , 1998 .

[22]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[23]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[24]  T. Dobzhansky Genetics and the Origin of Species , 1937 .

[25]  Wenguo Liu,et al.  Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents , 2012 .

[26]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[27]  Heiko Hamann,et al.  Speciation Dynamics: Generating Selective Pressure Towards Diversity , 2013, ECAL.

[28]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[29]  Nicholas J. Radcliffe,et al.  Genetic set recombination and its application to neural network topology optimisation , 1993, Neural Computing & Applications.

[30]  Graham Kendall,et al.  Evolving Collective Behavior in an Artificial Ecology , 2001, Artificial Life.

[31]  A. E. Eiben,et al.  Embodied, On-line, On-board Evolution for Autonomous Robotics , 2010 .

[32]  Stéphane Doncieux,et al.  Using behavioral exploration objectives to solve deceptive problems in neuro-evolution , 2009, GECCO.

[33]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[34]  J. Michael Herrmann,et al.  Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots , 2010, SAB.

[35]  Stefano Nolfi,et al.  How Co-Evolution can Enhance the Adaptive Power of Artificial Evolution: Implications for Evolutionary Robotics , 1998, EvoRobot.