Isomorphism Testing for Graphs of Bounded Rank Width

We give an algorithm that, for every fixed k, decides isomorphism of graphs of rank width at most k in polynomial time. As the rank width of a graph is bounded in terms of its clique width, we also obtain a polynomial time isomorphism test for graph classes of bounded clique width.

[1]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[2]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[3]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[4]  Martin Grohe,et al.  Definable Tree Decompositions , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[5]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[6]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[7]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[8]  Martin Grohe,et al.  Computing with Tangles , 2015, STOC.

[9]  P. M. Neumann PERMUTATION GROUP ALGORITHMS (Cambridge Tracts in Mathematics 152) By ÁKOS SERESS: 264 pp., £47.50 (US$65.00), ISBN 0-521-66103-X (Cambridge University Press, 2003) , 2004 .

[10]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[11]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[12]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[13]  Oleg Verbitsky,et al.  Helly Circular-Arc Graph Isomorphism Is in Logspace , 2013, MFCS.

[14]  James G. Oxley,et al.  Matroid theory , 1992 .

[15]  Jayme Luiz Szwarcfiter,et al.  Isomorphism of graph classes related to the circular-ones property , 2012, Discret. Math. Theor. Comput. Sci..

[16]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[17]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[18]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[19]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[20]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[21]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[22]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[23]  Martin Grohe,et al.  Descriptive Complexity, Canonisation, and Definable Graph Structure Theory , 2017, Lecture Notes in Logic.

[24]  Dániel Marx,et al.  Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.

[25]  Bert Gerards,et al.  Tangles, tree-decompositions and grids in matroids , 2009, J. Comb. Theory, Ser. B.

[26]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[27]  Michal Pilipczuk,et al.  Fixed-Parameter Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[28]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[29]  Michaël Rao,et al.  NLC-2 Graph Recognition and Isomorphism , 2007, WG.

[30]  Pascal Schweitzer Towards an Isomorphism Dichotomy for Hereditary Graph Classes , 2017, Theory of Computing Systems.