Solving Detachability Problem for the Polynomial Ring by Signature-based Groebner Basis Algorithms

Signature-based algorithms are a popular kind of algorithms for computing Groebner basis, including the famous F5 algorithm, F5C, extended F5, G2V and the GVW algorithm. In this paper, an efficient method is proposed to solve the detachability problem. The new method only uses the outputs of signature-based algorithms, and no extra Groebner basis computations are needed. When a Groebner basis is obtained by signature-based algorithms, the detachability problem can be settled in polynomial time.

[1]  Lei Huang,et al.  A new conception for computing gröbner basis and its applications , 2010, ArXiv.

[2]  Yao Sun,et al.  A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.

[3]  Dingkang Wang,et al.  A new proof for the correctness of the F5 algorithm , 2013 .

[4]  Christian Eder,et al.  F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..

[5]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[6]  Yao Sun,et al.  The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..

[7]  Shuhong Gao,et al.  A New Algorithm for Computing Grobner Bases , 2010 .

[8]  Till Stegers,et al.  Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..

[9]  Yao Sun,et al.  A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.

[10]  Christian Eder,et al.  On The Criteria Of The F5 Algorithm , 2008, 0804.2033.

[11]  A. I. Zobnin Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.

[12]  Alberto Arri The F5 criterion revised , 2009, ACCA.

[13]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[14]  Amir Hashemi,et al.  Extended F5 criteria , 2010, J. Symb. Comput..

[15]  Yao Sun,et al.  A Generalized Criterion for Signature-based Algorithms to Compute Gröbner Bases , 2011, ArXiv.

[17]  Christian Eder,et al.  Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.

[18]  John Perry,et al.  The F5 criterion revised , 2011, J. Symb. Comput..

[19]  Shuhong Gao,et al.  A new incremental algorithm for computing Groebner bases , 2010, ISSAC.

[20]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .