暂无分享,去创建一个
[1] Lei Huang,et al. A new conception for computing gröbner basis and its applications , 2010, ArXiv.
[2] Yao Sun,et al. A New Proof for the Correctness of F5 (F5-Like) Algorithm , 2010, 1004.0084.
[3] Dingkang Wang,et al. A new proof for the correctness of the F5 algorithm , 2013 .
[4] Christian Eder,et al. F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..
[5] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[6] Yao Sun,et al. The F5 algorithm in Buchberger’s style , 2010, J. Syst. Sci. Complex..
[7] Shuhong Gao,et al. A New Algorithm for Computing Grobner Bases , 2010 .
[8] Till Stegers,et al. Faugere's F5 Algorithm Revisited , 2006, IACR Cryptol. ePrint Arch..
[9] Yao Sun,et al. A generalized criterion for signature related Gröbner basis algorithms , 2011, ISSAC '11.
[10] Christian Eder,et al. On The Criteria Of The F5 Algorithm , 2008, 0804.2033.
[11] A. I. Zobnin. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals , 2010, Programming and Computer Software.
[12] Alberto Arri. The F5 criterion revised , 2009, ACCA.
[13] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.
[14] Amir Hashemi,et al. Extended F5 criteria , 2010, J. Symb. Comput..
[15] Yao Sun,et al. A Generalized Criterion for Signature-based Algorithms to Compute Gröbner Bases , 2011, ArXiv.
[17] Christian Eder,et al. Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.
[18] John Perry,et al. The F5 criterion revised , 2011, J. Symb. Comput..
[19] Shuhong Gao,et al. A new incremental algorithm for computing Groebner bases , 2010, ISSAC.
[20] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .