A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage

[1]  Haojie Xu,et al.  A room-temperature antiferroelectric in hybrid perovskite enables highly efficient energy storage at low electric fields , 2022, Chemical Science.

[2]  André P. Vieira,et al.  Phase behavior of a lattice-gas model for biaxial nematics. , 2022, Physical review. E.

[3]  S. Ishibashi,et al.  Large polarization and record-high performance of energy storage induced by a phase change in organic molecular crystals , 2021, Chemical science.

[4]  Xitao Liu,et al.  High-Curie Temperature Multilayered Hybrid Double Perovskite Photoferroelectrics Induced by Aromatic Cation Alloying. , 2021, Journal of the American Chemical Society.

[5]  Feng Gao,et al.  Lead‐Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives , 2021, Advanced Functional Materials.

[6]  Haojie Xu,et al.  A Metal-Free Molecular Antiferroelectric Material Showing High Phase Transition Temperatures and Large Electrocaloric Effects. , 2021, Journal of the American Chemical Society.

[7]  Rong Huang,et al.  Antiferroelectric Anisotropy of Epitaxial PbHfO3 Films for Flexible Energy Storage , 2021, Advanced Functional Materials.

[8]  M. Hong,et al.  Spacer Cation Alloying of a Homoconformational Carboxylate trans Isomer to Boost in-Plane Ferroelectricity in a 2D Hybrid Perovskite. , 2021, Journal of the American Chemical Society.

[9]  M. Kanatzidis,et al.  The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. , 2021, Chemical reviews.

[10]  K. Zhao,et al.  Centimeter‐Sized Single Crystals of Two‐Dimensional Hybrid Iodide Double Perovskite (4,4‐Difluoropiperidinium)4AgBiI8 for High‐Temperature Ferroelectricity and Efficient X‐Ray Detection , 2021, Advanced Functional Materials.

[11]  A. R. Sampaio,et al.  Conoscopic image of a biaxial negative in a reentrant discotic – biaxial nematic phase transition , 2020 .

[12]  Xitao Liu,et al.  A Multiaxial Layered Halide Double Perovskite Ferroelectric with Multiple Ferroic Orders , 2020 .

[13]  R. Xiong,et al.  Molecular Design Principles for Ferroelectrics: Ferroelectrochemistry. , 2020, Journal of the American Chemical Society.

[14]  Yu-Meng You,et al.  Confinement-Driven Ferroelectricity in a Two-Dimensional Hybrid Lead Iodide Perovskite. , 2020, Journal of the American Chemical Society.

[15]  Xitao Liu,et al.  Room‐Temperature Ferroelectric Material Composed of a Two‐Dimensional Metal Halide Double Perovskite for X‐ray Detection , 2020, Angewandte Chemie.

[16]  M. Kanatzidis,et al.  Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection , 2020, Nature Communications.

[17]  Yuan‐Yuan Tang,et al.  Precise Molecular Design Toward Organic-Inorganic Zinc Chloride ABX3 Ferroelectrics. , 2020, Journal of the American Chemical Society.

[18]  Xitao Liu,et al.  Exploring Lead-free Hybrid Double Perovskite Crystals of (BA)2CsAgBiBr7 with Large Mobility-Lifetime Product toward X-ray Detection. , 2019, Angewandte Chemie.

[19]  T. Yang,et al.  Exploring Lead‐Free Hybrid Double Perovskite Crystals of (BA) 2 CsAgBiBr 7 with Large Mobility‐Lifetime Product toward X‐Ray Detection , 2019, Angewandte Chemie.

[20]  Xitao Liu,et al.  A High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites. , 2019, Journal of the American Chemical Society.

[21]  R. Xiong,et al.  Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality. , 2019, Accounts of chemical research.

[22]  Xitao Liu,et al.  Discovery of an Above-Room-Temperature Antiferroelectric in Two-Dimensional Hybrid Perovskite. , 2019, Journal of the American Chemical Society.

[23]  L. Liao,et al.  Progress of Lead‐Free Halide Double Perovskites , 2019, Advanced Energy Materials.

[24]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[25]  Hajime Tanaka,et al.  Self-organization into ferroelectric and antiferroelectric crystals via the interplay between particle shape and dipolar interaction , 2018, Proceedings of the National Academy of Sciences.

[26]  E. Meyer,et al.  Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites , 2018, Metals.

[27]  Genshui Wang,et al.  Antiferroelectrics for Energy Storage Applications: a Review , 2018, Advanced Materials Technologies.

[28]  Lauren E. Marbella,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[29]  J. Neaton,et al.  Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6. , 2018, Journal of the American Chemical Society.

[30]  R. Xiong,et al.  Unprecedented Ferroelectric-Antiferroelectric-Paraelectric Phase Transitions Discovered in an Organic-Inorganic Hybrid Perovskite. , 2017, Journal of the American Chemical Society.

[31]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[32]  Zhuo Xu,et al.  High energy density in silver niobate ceramics , 2016 .

[33]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[34]  M. Guennou,et al.  Theory of antiferroelectric phase transitions , 2016, 1601.05687.

[35]  Xitao Liu,et al.  Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal. , 2015, Journal of the American Chemical Society.

[36]  R. Xiong,et al.  Highly Efficient Red-Light Emission in An Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl₃. , 2015, Journal of the American Chemical Society.

[37]  C. S. Hwang,et al.  Thin HfxZr1‐xO2 Films: A New Lead‐Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability , 2014 .

[38]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[39]  A. Tagantsev,et al.  The origin of antiferroelectricity in PbZrO3 , 2013, Nature Communications.

[40]  Xihong Hao,et al.  A review on the dielectric materials for high energy-storage application , 2013 .

[41]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[42]  C. Fennie,et al.  Polar octahedral rotations: A path to new multifunctional materials , 2011, 1108.2915.

[43]  Xihong Hao,et al.  Improved Energy Storage Performance and Fatigue Endurance of Sr‐Doped PbZrO3 Antiferroelectric Thin Films , 2009 .

[44]  P. Jain,et al.  Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. , 2008, Journal of the American Chemical Society.

[45]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[46]  K. Koumoto,et al.  Mechanical and dielectric failure of BaTiO3 ceramics , 1989 .

[47]  D. Campbell Soft Modes in Ferroelectrics and Antiferroelectrics , 1976 .

[48]  Kenkichi Okada,et al.  Antiferroelectric Phase Transition in Copper-Formate Tetrahydrate , 1965 .

[49]  E. Sawaguchi Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 , 1953 .

[50]  C. Kittel Theory of Antiferroelectric Crystals , 1951 .

[51]  J. M. Luttinger,et al.  Theory of Dipole Interaction in Crystals , 1946 .

[52]  L. Long,et al.  A porous coordination-polymer crystal containing one-dimensional water chains exhibits guest-induced lattice distortion and a dielectric anomaly. , 2008, Angewandte Chemie.