Temperature-Dependent Polarization Effects in Ce:LiLuF.

We report on tuned-laser, pump-probe-gain, and fluorescence yield studies of the effect that crystal temperature plays on the polarized emission characteristics of Ce:LiLuF. It was found that varsigma-polarized emission at the 327-nm fluorescence spectra peak is characterized by smaller laser pulse buildup times, higher small-signal gains, and smaller output powers than the pi-polarized 327-nm emission. We concluded that excited-state absorption (ESA) (and the resultant formation of color centers) is more severe for varsigma-polarized emission than for pi-polarized emission in this spectral region. We postulate that the enhancement in laser performance and crystal fluorescence observed with crystal cooling is due to narrowing of the ESA absorption band that reduces the probability of ESA and color-center formation.

[1]  W. Krupke,et al.  Measurement of excited‐state‐absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare‐earth lasers , 1978 .

[2]  Sylvain Girard,et al.  10 kHz continuously tunable Ce:LiLuF₄ laser , 1999 .

[3]  J. Wolf,et al.  New UV tunable solid-state lasers for lidar applications , 1995 .

[4]  Alexander K. Naumov,et al.  Ce3+-doped colquiriite : a new concept of all-solid-state tunable ultraviolet laser , 1993 .

[5]  Tadashi Itoh,et al.  Ce/sup 3+/-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping , 1995 .

[6]  N Sarukura,et al.  All-Solid-State Tunable Ultraviolet Subnanosecond Laser with Direct Pumping by the Fifth Harmonic of a Nd:YAG laser. , 1998, Applied optics.

[7]  D. Ehrlich,et al.  Optically pumped Ce:LaF3 laser at 286 nm. , 1980, Optics letters.

[8]  David W. Coutts,et al.  A 380-mW 7-MHz cerium LiLuF laser pumped by the frequency doubled yellow output of a copper-vapor-laser , 1999 .

[9]  William F. Krupke,et al.  Ultraviolet laser emission properties of Ce 3+ -doped LiSrAlF 6 and LiCaAlF 6 , 1994 .

[10]  Hamilton,et al.  Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. , 1989, Physical review. B, Condensed matter.

[11]  David W. Coutts,et al.  Optimization of line-focusing geometry for efficient nonlinear frequency conversion from copper-vapor lasers , 1995 .

[12]  Douglas S. Hamilton,et al.  Optical gain and loss studies in Ce 3+ :YLiF 4 , 1989 .

[13]  S. Govorkov,et al.  Efficient High Average Power and Narrow Spectral Linewidth Operation of Ce:LiCAF Laser at 1 kHz Repetition Rate , 1998 .

[14]  W. Miniscalco,et al.  Measurements of excited‐state absorption in Ce3+ : YAG , 1978 .

[15]  Leon Esterowitz,et al.  Tunable solid-state laser action in Ce3+:LiSrAlF6 , 1994 .

[16]  Christian Pedrini,et al.  Efficient and stable pulsed laser operation of Ce:LiLuF4 around 308 nm , 1998 .

[17]  Kenji Nakano,et al.  Direct Generation of 27-mJ, 309-nm Pulses from a Ce3+:LiLuF4 Oscillator Using a Large-Size Ce3+:LiLuF4 Crystal , 2000 .

[18]  R M Osgood,et al.  Ultraviolet solid-state Ce:YLF laser at 325 nm. , 1979, Optics letters.

[19]  David W. Coutts,et al.  Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers , 1995 .

[20]  Douglas S. Hamilton,et al.  UV-induced loss mechanisms in a Ce3+:YLiF4 laser , 1988 .

[21]  C E Webb,et al.  530-mW 7-kHz cerium LiCAF laser pumped by the sum-frequency-mixed output of a copper-vapor laser. , 1999, Optics letters.