Knapsack and the Power Word Problem in Solvable Baumslag-Solitar Groups

We prove that the power word problem for the solvable Baumslag-Solitar groups $\mathsf{BS}(1,q) = \langle a,t \mid t a t^{-1} = a^q \rangle$ can be solved in $\mathsf{TC}^0$. In the power word problem, the input consists of group elements $g_1, \ldots, g_d$ and binary encoded integers $n_1, \ldots, n_d$ and it is asked whether $g_1^{n_1} \cdots g_d^{n_d} = 1$ holds. Moreover, we prove that the knapsack problem for $\mathsf{BS}(1,q)$ is $\mathsf{NP}$-complete. In the knapsack problem, the input consists of group elements $g_1, \ldots, g_d,h$ and it is asked whether the equation $g_1^{x_1} \cdots g_d^{x_d} = h$ has a solution in $\mathbb{N}^d$.

[1]  Jin-Yi Cai,et al.  Multiplicative equations over commuting matrices , 1996, SODA '96.

[2]  Richard J. Lipton,et al.  The Complexity of the A B C Problem , 2000, SIAM J. Comput..

[3]  Christoph Haase,et al.  On the Existential Theories of Büchi Arithmetic and Linear p-adic Fields , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[4]  Eric Allender,et al.  Uniform constant-depth threshold circuits for division and iterated multiplication , 2002, J. Comput. Syst. Sci..

[5]  Laurent Bartholdi,et al.  Groups with ALOGTIME-hard word problems and PSPACE-complete compressed word problems , 2019, ArXiv.

[6]  A.Vershik,et al.  The Word and Geodesic Problems in Free Solvable Groups , 2008, 0807.1032.

[7]  Gilbert Baumslag,et al.  Wreath products and finitely presented groups , 1961 .

[8]  Alexei G. Myasnikov,et al.  The Diophantine problem in some metabelian groups , 2019, Math. Comput..

[9]  Markus Lohrey,et al.  Closure properties of knapsack semilinear groups , 2019 .

[10]  Armin Weiss,et al.  A Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups , 2016, AMS-EMS-SPM Joint Meeting.

[11]  Wayne Eberly Very Fast Parallel Polynomial Arithmetic , 1989, SIAM J. Comput..

[12]  Christoph Haase,et al.  On the complexity of model checking counter automata , 2012 .

[13]  Markus Lohrey,et al.  Knapsack Problems for Wreath Products , 2018, STACS.

[14]  Armin Weiss,et al.  On the complexity of conjugacy in amalgamated products and HNN extensions , 2015 .

[15]  Guoqiang Ge Testing equalities of multiplicative representations in polynomial time , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[16]  Alexei Mishchenko,et al.  Knapsack problem for nilpotent groups , 2017, Groups Complex. Cryptol..

[17]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[18]  C. Hooley On Artin's conjecture. , 1967 .

[19]  Markus Lohrey,et al.  The Compressed Word Problem for Groups , 2014, Springer Briefs in Mathematics.

[20]  D. H. Robinson,et al.  Parallel algorithms for group word problems , 1993 .

[21]  Alexei G. Myasnikov,et al.  Knapsack problems in groups , 2013, Math. Comput..

[22]  Pierre McKenzie,et al.  On the Complexity of Free Monoid Morphisms , 1998, ISAAC.

[23]  Markus Lohrey,et al.  Evaluation of Circuits Over Nilpotent and Polycyclic Groups , 2017, Algorithmica.

[24]  Markus Lohrey,et al.  The power word problem , 2019, MFCS.

[25]  Eric Allender,et al.  Low-Depth Uniform Threshold Circuits and the Bit-Complexity of Straight Line Programs , 2013, MFCS.

[27]  Andrey Nikolaev,et al.  Knapsack problems in products of groups , 2014, J. Symb. Comput..

[28]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[29]  Markus Lohrey,et al.  Knapsack in Graph Groups , 2017, Theory of Computing Systems.

[30]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .