KINEMATICS OF THE STELLAR HALO AND THE MASS DISTRIBUTION OF THE MILKY WAY USING BLUE HORIZONTAL BRANCH STARS

Here we present a kinematic study of the Galactic halo out to a radius of ∼ 60 kpc, using 4664 blue horizontal branch (BHB) stars selected from the SDSS/SEGUE survey, to determine key dynamical properties. Using a maximum likelihood analysis, we determine the velocity dispersion profiles in spherical coordinates ( �r, ��, ��) and the anisotropy profile ( �). The radial velocity dispersion profile ( �r) is measured out to a galactocentric radius of r ∼ 60 kpc, but due to the lack of proper-motion information, ��, �� andcould only be derived directly out to r ∼ 25 kpc. From a starting value of � ≈ 0.5 in the inner parts (9 < r/kpc< 12), the profile falls sharply in the range r ≈ 13 - 18 kpc, with a minimum value of � = -1.2 at r = 17 kpc, rising sharply at larger radius. In the outer parts, in the range 25 < r/kpc < 56, we predict the profile to be roughly constant with a value of � ≈ 0.5. The newly discovered kinematic anomalies are shown not to arise from halo substructures. We also studied the anisotropy profile of simulated stellar h alos formed purely by accretion and found that they cannot reproduce the sharp dip seen in the data. From the Jeans equation, we compute the stellar rotation curve (vcirc) of the Galaxy out to r ∼ 25 kpc. The mass of the Galaxy within r . 25 kpc is determined to be 2.1× 10 11 M⊙, and with a 3-component fit to vcirc(r), we determine the virial mass of the Milky Way dark matter halo to be Mvir = 0.9 +0.4 -0.3× 10 12 M⊙ (Rvir = 249 +34 -31 kpc).

[1]  J. Jeans On the theory of star-streaming and the structure of the universe , 1915 .

[2]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[3]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[4]  D. York,et al.  THE CASE FOR THE DUAL HALO OF THE MILKY WAY , 2011, 1104.2513.

[5]  Sergey E. Koposov,et al.  QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO , 2010, 1011.1925.

[6]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[7]  David Schlegel,et al.  Blue Horizontal-Branch Stars in the Sloan Digital Sky Survey. I. Sample Selection and Structure in the Galactic Halo , 2004 .

[8]  Christopher S. Kochanek,et al.  The mass of the Milky Way galaxy , 1995 .

[9]  H. Rix,et al.  GALACTIC MASERS AND THE MILKY WAY CIRCULAR VELOCITY , 2009, 0907.5423.

[10]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[11]  C. Cacciari,et al.  Kinematic structure in the Galactic halo at the North Galactic Pole: RR Lyrae and BHB stars show different kinematics , 2006, Proceedings of the International Astronomical Union.

[12]  V. Belokurov,et al.  Rotation of halo populations in the Milky Way and M31 , 2010, 1008.3067.

[13]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[14]  H. Rix,et al.  MAPPING THE STELLAR STRUCTURE OF THE MILKY WAY THICK DISK AND HALO USING SEGUE PHOTOMETRY , 2009, 0911.3900.

[15]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[16]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[17]  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[18]  D. Merritt,et al.  Spherical stellar systems with spheroidal velocity distributions , 1985 .

[19]  I. Karachentsev,et al.  Masses of the local group and of the M81 group estimated from distortions in the local velocity field , 2006 .

[20]  Ignasi Ribas,et al.  First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy , 2005 .

[21]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[22]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[23]  U. Munari,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[24]  J. Schaye,et al.  Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations , 2011, 1111.1747.

[25]  A Dynamical and Kinematic Model of the Galactic Stellar Halo and Possible Implications for Galaxy Formation Scenarios , 1996, astro-ph/9610178.

[26]  P. Cuddeford,et al.  An analytic inversion for anisotropic spherical galaxies , 1991 .

[27]  S. Demers,et al.  C stars as kinematic probes of the Milky Way disk from 9 to 15 kpc , 2007 .

[28]  Steven R. Majewski,et al.  GROUP FINDING IN THE STELLAR HALO USING PHOTOMETRIC SURVEYS: CURRENT SENSITIVITY AND FUTURE PROSPECTS , 2010, 1012.3515.

[29]  R. Smart,et al.  The kinematic properties of BHB and RR Lyrae stars towards the Anticentre and the North Galactic Pole: the transition between the inner and the outer halo , 2012, 1203.2146.

[30]  A. Stark,et al.  Catalog of CO radial velocities toward galactic H II regions , 1982 .

[31]  Warren R. Brown,et al.  THE MASS PROFILE OF THE GALAXY TO 80 kpc , 2010, 1005.2619.

[32]  J. Kalirai The age of the Milky Way inner halo , 2012, Nature.

[33]  V. Belokurov,et al.  Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo , 2012, 1204.5189.

[34]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[35]  S. Majewski Galactic Structure Surveys and the Evolution of the Milky Way , 1993 .

[36]  Michael A. Perryman,et al.  GAIA: An Astrometric and Photometric Survey of our Galaxy , 2002 .

[37]  Rodrigo Ibata,et al.  Sagittarius: the nearest dwarf galaxy , 1995 .

[38]  Ben Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2007 .

[39]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[40]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[41]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[42]  V. Belokurov,et al.  The cold veil of the Milky Way stellar halo. , 2012, 1205.6203.

[43]  On the Andromeda to Milky Way mass ratio , 2009, 0905.1897.

[44]  Brant E. Robertson,et al.  Tracing Galaxy Formation with Stellar Halos. II. Relating Substructure in Phase and Abundance Space to Accretion Histories , 2008, 0807.3911.

[45]  Martin C. Smith,et al.  THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO , 2009, 0902.2709.

[46]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[47]  IoA,et al.  Galactic Halo Stellar Structures in the Triangulum-Andromeda Region , 2007, astro-ph/0703506.

[48]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[49]  The present and future mass of the Milky Way halo , 1999, astro-ph/9906197.

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[52]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.

[53]  T. Beers,et al.  The Mass of the Milky Way: Limits from a newly assembled set of halo objects , 2002, astro-ph/0210508.

[54]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[55]  D. Lin,et al.  On the proper motion of the Magellanic Clouds and the halo mass of our Galaxy , 1982 .

[56]  Alexander G. G. M. Tielens,et al.  The Multiphase Structure of the Galactic Halo: High-Velocity Clouds in a Hot Corona , 1995 .

[57]  Amina Helmi,et al.  The stellar halo of the Galaxy , 2008, 0804.0019.

[58]  S. White,et al.  The kinematics and dynamics of the galactic globular cluster system , 1980 .

[59]  S. Samurovi'c,et al.  The Jeans modeling of the Milky Way galaxy: implications of the kinematics of the stellar halo , 2011 .

[60]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[61]  M. Baes,et al.  Dynamical models with a general anisotropy profile , 2007, 0705.4109.

[62]  M. Merrifield,et al.  Refining the Oort and Galactic constants , 1998, astro-ph/9802034.

[63]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005 .

[64]  A. Stark,et al.  The rotation curve of the Milky Way to 2 R(0) , 1989 .

[65]  M. Steinmetz,et al.  Satellites of simulated galaxies: survival, merging and their relationto the dark and stellar haloes , 2007, 0704.1770.

[66]  C. Harrison,et al.  MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY , 2010, 1007.0013.

[67]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[68]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[69]  M. Honma,et al.  Rotation Curve of the Galaxy , 1997 .

[70]  Heidelberg,et al.  Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.

[71]  D. York,et al.  Blue Horizontal-Branch Stars in the Sloan Digital Sky Survey. II. Kinematics of the Galactic Halo , 2003, astro-ph/0311325.

[72]  V. Kozhurina-Platais,et al.  A Large Local Rotational Speed for the Galaxy Found from Proper Motions: Implications for the Mass of the Milky Way , 1999, astro-ph/9908118.

[73]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[74]  Puragra Guhathakurta,et al.  Discovery of Andromeda XIV: A Dwarf Spheroidal Dynamical Rogue in the Local Group? , 2007, astro-ph/0702635.

[75]  Warren R. Brown,et al.  VELOCITY DISPERSION PROFILE OF THE MILKY WAY HALO , 2009, 0910.2242.

[76]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[77]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[78]  James M. Moran,et al.  The distance to the center of the Galaxy , 1987 .

[79]  O. Gerhard A new family of distribution functions for spherical galaxies , 1991 .

[80]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[81]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[82]  Heidi Jo Newberg,et al.  LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan , 2012, 1206.3578.

[83]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[84]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[85]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[86]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars: A Diffuse Star Cloud or Tidal Debris around the Milky Way in Triangulum-Andromeda , 2004, astro-ph/0405437.

[87]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[88]  M. Honma,et al.  Unified Rotation Curve of the Galaxy — Decomposition into de Vaucouleurs Bulge, Disk, Dark Halo, and the 9-kpc Rotation Dip — , 2008, 0811.0859.

[89]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[90]  J. Binney,et al.  The uncertainty in Galactic parameters , 2009, 0907.4685.

[91]  Nial R. Tanvir,et al.  Distances and metallicities for 17 Local Group galaxies , 2005 .

[92]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[93]  L. Casagrande,et al.  On the alleged duality of the Galactic halo , 2010, 1012.0842.

[94]  Matthias Steinmetz,et al.  Stars beyond galaxies: the origin of extended luminous haloes around galaxies , 2005 .

[95]  Cambridge,et al.  The Masses of the Milky Way and Andromeda galaxies , 2010, 1002.4565.

[96]  Heidelberg,et al.  Kinematics of SDSS subdwarfs: structure and substructure of the Milky Way halo , 2009, 0904.1012.

[97]  Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region , 2004, astro-ph/0406221.

[98]  A revised Λ CDM mass model for the Andromeda Galaxy , 2006, astro-ph/0612228.

[99]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[100]  S. Sakai,et al.  Astrometry of Galactic Star-Forming Region Sharpless 269 with VERA : Parallax Measurements and Constraint on Outer Rotation Curve , 2007, 0709.0820.

[101]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[102]  A. Toomre,et al.  On the Distribution of Matter Within Highly Flattened Galaxies. , 1963 .

[103]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[104]  D. Merritt,et al.  Distribution functions for spherical galaxies , 1985 .

[105]  D. Clemens Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. , 1985 .