Adaptive sparse grid based HOPGD: Toward a nonintrusive strategy for constructing space‐time welding computational vademecum

[1]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[2]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[3]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[4]  Anthony Gravouil,et al.  A global model reduction approach for 3D fatigue crack growth with confined plasticity , 2011 .

[5]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[6]  Isabelle Ramière,et al.  Iterative residual-based vector methods to accelerate fixed point iterations , 2015, Comput. Math. Appl..

[7]  Daniel A. Tortorelli,et al.  A displacement-based reference frame formulation for steady-state thermo-elasto-plastic material processes , 1999 .

[8]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[9]  Francisco Chinesta,et al.  Computational vademecums for real‐time simulation of surgical cutting in haptic environments , 2016 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[12]  Alain Combescure,et al.  Efficient hyper‐reduced‐order model (HROM) for thermal analysis in the moving frame , 2017 .

[13]  A. Huespe,et al.  High-performance model reduction techniques in computational multiscale homogenization , 2014 .

[14]  Ye Lu,et al.  Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations , 2018 .

[15]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[16]  E. Tyrtyshnikov Kronecker-product approximations for some function-related matrices , 2004 .

[17]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[18]  Elías Cueto,et al.  Real‐time monitoring of thermal processes by reduced‐order modeling , 2015 .

[19]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[20]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[21]  Pierre Ladevèze,et al.  Virtual charts for shape optimization of structures , 2013 .

[22]  Siamak Niroomandi,et al.  Real-time deformable models of non-linear tissues by model reduction techniques , 2008, Comput. Methods Programs Biomed..

[23]  Icíar Alfaro,et al.  Computational vademecums for the real-time simulation of haptic collision between nonlinear solids , 2015 .

[24]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[25]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[26]  Alain Combescure,et al.  Efficient hyper reduced-order model (HROM) for parametric studies of the 3D thermo-elasto-plastic calculation , 2015 .

[27]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[28]  Siamak Niroomandi,et al.  Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models , 2012, Comput. Methods Programs Biomed..

[29]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[30]  A. Corigliano,et al.  Model Order Reduction and domain decomposition strategies for the solution of the dynamic elastic–plastic structural problem , 2015 .

[31]  David Néron,et al.  Virtual charts of solutions for parametrized nonlinear equations , 2014 .

[32]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[33]  Adrien Leygue,et al.  Vademecum‐based GFEM (V‐GFEM): optimal enrichment for transient problems , 2016 .

[34]  Siamak Niroomandi,et al.  Model order reduction for hyperelastic materials , 2010 .

[35]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[36]  Pedro Díez,et al.  Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition , 2015 .

[37]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[38]  S Niroomandi,et al.  Real‐time simulation of biological soft tissues: a PGD approach , 2013, International journal for numerical methods in biomedical engineering.

[39]  Ye Lu,et al.  Space–time POD based computational vademecums for parametric studies: application to thermo-mechanical problems , 2018, Adv. Model. Simul. Eng. Sci..

[40]  P. Michaleris,et al.  Optimization of thermal processes using an Eulerian formulation and application in laser surface hardening , 2000 .