2 General Robinson – Trautman and Kundt geometries and Einstein ’ s equations for aligned gyratonic matter

In our previous paper [Phys. Rev. D 89 (2014) 124029], cited as [1], we attempted to find Robinson–Trautman-type solutions of Einstein’s equations representing gyratonic sources (matter field in the form of an aligned null fluid, or particles propagating with the speed of light, with an additional internal spin). Unfortunately, by making a mistake in our calculations, we came to the wrong conclusion that such solutions do not exist. We are now correcting this mistake. In fact, this allows us to explicitly find a new large family of gyratonic solutions in the Robinson–Trautman class of spacetimes in any dimension greater than (or equal to) three. Gyratons thus exist in all twist-free and shear-free geometries, that is both in the expanding Robinson–Trautman and in the non-expanding Kundt classes of spacetimes. We derive, summarize and compare explicit canonical metrics for all such spacetimes in arbitrary dimension. PACS class: 04.20.Jb, 04.30.–w, 04.50.–h, 04.40.Nr

[1]  J. Podolský,et al.  All solutions of Einstein’s equations in 2+1 dimensions: Λ-vacuum, pure radiation, or gyratons , 2018, Classical and Quantum Gravity.

[2]  M. Ortaggio,et al.  Electromagnetic fields with vanishing scalar invariants , 2015, 1506.04538.

[3]  J. Podolský,et al.  Static and radiating p-form black holes in the higher dimensional Robinson-Trautman class , 2014, 1411.1943.

[4]  R. Švarc,et al.  Algebraic structure of Robinson–Trautman and Kundt geometries in arbitrary dimension , 2014, 1406.3232.

[5]  J. Podolský,et al.  Gyratonic p p waves and their impulsive limit , 2014, 1406.3227.

[6]  J. Podolský,et al.  Absence of gyratons in the Robinson-Trautman class , 2014, 1406.0729.

[7]  M. Ortaggio,et al.  Algebraic classification of higher dimensional spacetimes based on null alignment , 2012, 1211.7289.

[8]  J. Podolský,et al.  Higher-dimensional Kundt waves and gyratons , 2012, 1201.2813.

[9]  D. Brill Jerry B. Griffiths and Jiři Podolský: Exact space-times in Einstein’s general relativity , 2010 .

[10]  A. Coley,et al.  Kundt spacetimes , 2009, 0901.0394.

[11]  J. Podolský,et al.  General Kundt spacetimes in higher dimensions , 2008, 0812.4928.

[12]  J. Podolský,et al.  Robinson–Trautman spacetimes with an electromagnetic field in higher dimensions , 2007, 0708.4299.

[13]  A. Coley,et al.  Higher dimensional VSI spacetimes , 2006, gr-qc/0611019.

[14]  J. Podolský,et al.  Robinson–Trautman spacetimes in higher dimensions , 2006, gr-qc/0605136.

[15]  V. Frolov,et al.  Gravitational field of charged gyratons , 2005, gr-qc/0512124.

[16]  V. Frolov,et al.  Relativistic gyratons in asymptotically AdS spacetime , 2005, hep-th/0509044.

[17]  V. Frolov,et al.  Gravitational field of relativistic gyratons , 2005, hep-th/0506001.

[18]  V. Frolov,et al.  Gravitational field of a spinning radiation beam pulse in higher dimensions , 2005, hep-th/0504027.

[19]  A. Trautman,et al.  Some spherical gravitational waves in general relativity , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  W. Kundt The plane-fronted gravitational waves , 1961 .

[21]  J. Griffiths Some physical properties of neutrino-gravitational fields , 1972 .

[22]  W. Bonnor Spinning null fluid in general relativity , 1970 .

[23]  W. Bonnor,et al.  Spherical gravitational waves , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.