An Evolutionary Algorithm for Integer Programming

The mutation distribution of evolutionary algorithms usually is oriented at the type of the search space. Typical examples are binomial distributions for binary strings in genetic algorithms or normal distributions for real valued vectors in evolution strategies and evolutionary programming. This paper is devoted to the construction of a mutation distribution for unbounded integer search spaces. The principle of maximum entropy is used to select a specific distribution from numerous potential candidates. The resulting evolutionary algorithm is tested for five nonlinear integer problems.

[1]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[2]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[3]  R. Hesse Recent Advances in Optimization Techniques , 1968 .

[4]  N. L. Johnson,et al.  Distributions in Statistics: Discrete Distributions. , 1970 .

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[6]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[7]  P. Müller Wahrscheinlichkeitsrechnung und Mathematische Statistik. Lexikon der Stochastik , 1980 .

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Rein Luus,et al.  Optimization of System Reliability by a New Nonlinear Integer Programming Procedure , 1975, IEEE Transactions on Reliability.

[10]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[11]  R. Kelahan,et al.  Application of the adaptive random search to discrete and mixed integer optimization , 1978 .

[12]  G. Hogg,et al.  UNCONSTRAINED DISCRETE NONLINEAR PROGRAMMING , 1979 .

[13]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[14]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[15]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.