Smoothing bias in density derivative estimation

Abstract This article discusses a generic feature of density estimation by local smoothing, namely that estimated derivatives and location score vectors will display a systematic downward (attenuation) bias. We study the behavior of kernel estimators, indicating how the derivative bias arises and showing a simple result. We then consider the estimation of score vectors (negative log-density derivatives), which are motivated by the problem of estimating average derivatives and the adaptive estimation of regression models. Using “fixed bandwidth” limits, we show how scores are proportionally downward biased for normal densities and argue from normal mixture densities that proportional bias can be a reasonable approximation. We propose a simple diagnostic statistic for score bias.

[1]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[2]  C. Stein Efficient Nonparametric Testing and Estimation , 1956 .

[3]  C. J. Stone,et al.  Adaptive Maximum Likelihood Estimators of a Location Parameter , 1975 .

[4]  Edward E. Leamer,et al.  Matrix Weighted Averages and Posterior Bounds , 1976 .

[5]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[6]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[7]  P. Bickel On Adaptive Estimation , 1982 .

[8]  Prakasa Rao Nonparametric functional estimation , 1983 .

[9]  Charles F. Manski,et al.  Adaptive estimation of non–linear regression models , 1984 .

[10]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[11]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[12]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[13]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[14]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[15]  Roger Koenker,et al.  Adaptive $L$-Estimation for Linear Models , 1989 .

[16]  W. Härdle Applied Nonparametric Regression , 1991 .

[17]  M. C. Jones On correcting for variance inflation in kernel density estimation , 1991 .

[18]  L. Goldstein,et al.  Optimal Plug-in Estimators for Nonparametric Functional Estimation , 1992 .

[19]  W. Härdle Applied Nonparametric Regression , 1992 .

[20]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[21]  A. Tsybakov,et al.  Bandwidth Choice for Average Derivative Estimation , 1992 .

[22]  A. Pakes,et al.  A limit theorem for a smooth class of semiparametric estimators , 1995 .