A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply

We present an area-efficient neural signal-acquisition system that uses a digitally intensive architecture to reduce system area and enable operation from a 0.5 V supply. The architecture replaces ac coupling capacitors and analog filters with a dual mixed-signal servo loop, which allows simultaneous digitization of the action and local field potentials. A noise-efficient DAC topology and an compact, boxcar sampling ADC are used to cancel input offset and prevent noise folding while enabling “per-pixel” digitization, alleviating system-level complexity. Implemented in a 65 nm CMOS process, the prototype occupies 0.013 mm2 while consuming 5 μW and achieving 4.9 μVrms of input-referred noise in a 10 kHz bandwidth.

[1]  Jan M. Rabaey,et al.  A 0.013mm2 5μW DC-coupled neural signal acquisition IC with 0.5V supply , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  A.V. Peterchev,et al.  A 4-/spl mu/a quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications , 2004, IEEE Journal of Solid-State Circuits.

[3]  A.-T. Avestruz,et al.  A 5 $\mu$ W/Channel Spectral Analysis IC for Chronic Bidirectional Brain–Machine Interfaces , 2008, IEEE Journal of Solid-State Circuits.

[4]  Bernhard E. Boser,et al.  A Mode-Matching ΔΣ Closed-Loop Vibratory-Gyroscope Readout Interface with a 0.004°/s/√Hz Noise Floor over a 50Hz Band , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[5]  Seth R. Sanders,et al.  Converter IC for Cellular Phone Applications , 2004 .

[6]  Anantha Chandrakasan,et al.  A Biomedical Sensor Interface With a sinc Filter and Interference Cancellation , 2011, IEEE Journal of Solid-State Circuits.

[7]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[8]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[9]  M. Høvin,et al.  Delta-sigma modulators using frequency-modulated intermediate values , 1997, IEEE J. Solid State Circuits.

[10]  B.E. Boser,et al.  A Mode-Matching $\Sigma\Delta$ Closed-Loop Vibratory Gyroscope Readout Interface With a 0.004$^{\circ}$ /s/$\surd{\hbox{Hz}}$ Noise Floor Over a 50 Hz Band , 2008, IEEE Journal of Solid-State Circuits.

[11]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[12]  Andreas Hierlemann,et al.  Impedance characterization and modeling of electrodes for biomedical applications , 2005, IEEE Transactions on Biomedical Engineering.

[13]  Timothy Denison,et al.  Integrated circuit amplifiers for multi-electrode intracortical recording , 2009, Journal of neural engineering.

[14]  Pedram Mohseni,et al.  A fully integrated neural recording amplifier with DC input stabilization , 2004, IEEE Transactions on Biomedical Engineering.

[15]  J. Carmena,et al.  Emergence of a Stable Cortical Map for Neuroprosthetic Control , 2009, PLoS biology.

[16]  M.Z. Straayer,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time $\Sigma\Delta$ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, IEEE Journal of Solid-State Circuits.

[17]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[18]  Rizwan Bashirullah,et al.  A 20µW neural recording tag with supply-current-modulated AFE in 0.13µm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[19]  R.R. Harrison,et al.  A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System , 2006, IEEE Journal of Solid-State Circuits.

[20]  Teresa H. Y. Meng,et al.  A mm-sized implantable power receiver with adaptive link compensation , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  Michael H. Perrott,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time ΣΔ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, VLSIC 2008.

[22]  W.M.C. Sansen,et al.  A micropower low-noise monolithic instrumentation amplifier for medical purposes , 1987 .

[23]  James E. Jaussi,et al.  An 8-Gb/s simultaneous bidirectional link with on-die waveform capture , 2003, IEEE J. Solid State Circuits.

[24]  U. Wismar,et al.  Linearity of bulk-controlled inverter ring VCO in weak and strong inversion , 2007 .

[25]  Jose M. Carmena,et al.  Exploiting the 1/f structure of neural signals for the design of integrated neural amplifiers , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[26]  P. Kinget,et al.  0.5-V analog circuit techniques and their application in OTA and filter design , 2005, IEEE Journal of Solid-State Circuits.

[27]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[28]  Boris Murmann,et al.  A 96-channel full data rate direct neural interface in 0.13µm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.