FlexStylus: Leveraging Bend Input for Pen Interaction

FlexStylus, a flexible stylus, detects deformation of the barrel as a vector with both a rotational and an absolute value, providing two degrees of freedom with the goal of improving the expressivity of digital art using a stylus device. We outline the construction of the prototype and the principles behind the sensing method, which uses a cluster of four fibre-optic based deformation sensors. We propose interaction techniques using the FlexStylus to improve menu navigation and tool selection. Finally, we describe a study comparing users' ability to match a changing target value using a commercial pressure stylus and the FlexStylus' absolute deformation. When using the FlexStylus, users had a significantly higher accuracy overall. This suggests that deformation may be a useful input method for future work considering stylus augmentation.

[1]  Stéphane Huot,et al.  PushMenu: Extending Marking Menus for Pressure-Enabled Input Devices , 2008 .

[2]  Xiang 'Anthony' Chen,et al.  Motion and context sensing techniques for pen computing , 2013, Graphics Interface.

[3]  Vincent Lévesque,et al.  ReFlex: A Flexible Smartphone with Active Haptic Feedback for Bend Input , 2016, TEI.

[4]  Shumin Zhai,et al.  User performance in relation to 3D input device design , 1998, COMG.

[5]  Roel Vertegaal,et al.  Fitts' Law and the Effects of Input Mapping and Stiffness on Flexible Display Interactions , 2016, CHI.

[6]  Xiaojun Bi,et al.  An exploration of pen rolling for pen-based interaction , 2008, UIST '08.

[7]  Hongan Wang,et al.  Tilt menu: using the 3D orientation information of pen devices to extend the selection capability of pen-based user interfaces , 2008, CHI.

[8]  George W. Fitzmaurice,et al.  Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip , 1999, SI3D.

[9]  Andrea Bunt,et al.  A-coord input: coordinating auxiliary input streams for augmenting contextual pen-based interactions , 2012, CHI.

[10]  Roel Vertegaal,et al.  PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays , 2011, CHI.

[11]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[12]  Teemu Tuomas Ahmaniemi,et al.  What is a device bend gesture really good for? , 2014, CHI.

[13]  Daniel Vogel,et al.  Conté: multimodal input inspired by an artist's crayon , 2011, UIST.

[14]  Jan O. Borchers,et al.  Twend: twisting and bending as new interaction gesture in mobile devices , 2008, CHI Extended Abstracts.

[15]  Daniel Vogel,et al.  The Impact of Control-Display Gain on User Performance in Pointing Tasks , 2008, Hum. Comput. Interact..

[16]  Jiro Tanaka,et al.  Interaction Technique Combining Gripping and Pen Pressures , 2010, KES.

[17]  Daniel Vogel,et al.  The effect of spring stiffness and control gain with an elastic rate control pointing device , 2008, CHI.

[18]  Xiaojun Bi,et al.  Acquiring and pointing: an empirical study of pen-tilt-based interaction , 2011, CHI.

[19]  Zhou Xiaolei Comparative Study on Cursor Position Controlled by Pen Pressure and Pen Tilt , 2014, 2014 Seventh International Symposium on Computational Intelligence and Design.

[20]  Audrey Girouard,et al.  Bending Blindly: Exploring Bend Gestures for the Blind , 2016, CHI Extended Abstracts.

[21]  Alexander Keith Eady,et al.  FlexStylus: A Deformable Stylus for Digital Art , 2016, CHI Extended Abstracts.

[22]  William Buxton,et al.  User learning and performance with marking menus , 1994, CHI 1994.

[23]  Markus Löchtefeld,et al.  Morphees: toward high "shape resolution" in self-actuated flexible mobile devices , 2013, CHI.

[24]  Johan Kildal,et al.  Feel the action: dynamic tactile cues in the interaction with deformable uis , 2013, CHI Extended Abstracts.

[25]  Roel Vertegaal,et al.  FlexView: an evaluation of depth navigation on deformable mobile devices , 2013, TEI '13.

[26]  Audrey Girouard,et al.  Bending the rules: bend gesture classification for flexible displays , 2013, CHI.

[27]  Gilles Bailly,et al.  Leaf Menus: Linear Menus with Stroke Shortcuts for Small Handheld Devices , 2009, INTERACT.

[28]  Eric Singer,et al.  Sonic Banana: A Novel Bend-Sensor-Based MIDI Controller , 2003, NIME.

[29]  Kasper Hornbæk,et al.  Deformable Interfaces for Performing Music , 2015, CHI.

[30]  Xiang Cao,et al.  Grips and gestures on a multi-touch pen , 2011, CHI.

[31]  Jürgen Steimle,et al.  Flexy: Shape-Customizable, Single-Layer, Inkjet Printable Patterns for 1D and 2D Flex Sensing , 2017, TEI.

[32]  Ravin Balakrishnan,et al.  Zliding: fluid zooming and sliding for high precision parameter manipulation , 2005, UIST.

[33]  Ravin Balakrishnan,et al.  Pressure widgets , 2004, CHI.

[34]  Ivan Poupyrev,et al.  Sensing through structure: designing soft silicone sensors , 2010, TEI.

[35]  Yang Li,et al.  Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes , 2007, UIST.

[36]  Alexander Keith Eady,et al.  One-Handed Bend Interactions with Deformable Smartphones , 2015, CHI.