Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements Hxy, indexed by $${x,y \in \Lambda \subset \mathbb{Z}^d}$$, are independent, uniformly distributed random variables if $${\lvert{x-y}\rvert}$$ is less than the band width W, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales $${t\ll W^{d/3}}$$. We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6 times the band width. All results are uniform in the size $${\lvert{\Lambda}\rvert}$$ of the matrix.

[1]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[2]  Y. Fyodorov,et al.  Scaling properties of localization in random band matrices: A sigma -model approach. , 1991, Physical review letters.

[3]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[4]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[5]  A. Klein Absolutely Continuous Spectrum in the Anderson Model on the Bethe Lattice , 1994 .

[6]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[7]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[8]  W. Schlag,et al.  Frequency concentration and location lengths for the anderson model at small disorders , 2002 .

[9]  Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3 , 2003, math-ph/0305051.

[10]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[11]  T. Spencer,et al.  Quasi-Diffusion in a 3D Supersymmetric Hyperbolic Sigma Model , 2009, 0901.1652.

[12]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[13]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[14]  Quantum diffusion of the random Schrödinger evolution in the scaling limit , 2005, math-ph/0512014.

[15]  H. Yau,et al.  Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .

[16]  Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena , 2003 .

[17]  I. Krasikov,et al.  Uniform Bounds for Bessel Functions , 2006 .

[18]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[19]  From the Anderson Model on a Strip to the DMPK Equation and Random Matrix Theory , 2009, 0912.1574.

[20]  J. Fröhlich,et al.  Diffusion of a Massive Quantum Particle Coupled to a Quasi-Free Thermal Medium , 2009, 0906.5178.

[21]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[22]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[23]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[24]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[25]  H. Yau,et al.  Quantum Diffusion for the Anderson Model in the Scaling Limit , 2005, math-ph/0502025.

[26]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[27]  Antti Knowles,et al.  Quantum Diffusion and Delocalization for Band Matrices with General Distribution , 2010, 1005.1838.

[28]  M. Disertori,et al.  Density of States for Random Band Matrices , 2002 .

[29]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[30]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[31]  F. Martinelli,et al.  Constructive proof of localization in the Anderson tight binding model , 1985 .

[32]  A. Elgart Lifshitz tails and localization in the three-dimensional Anderson model , 2009 .

[33]  Jeffrey Schenker,et al.  Eigenvector Localization for Random Band Matrices with Power Law Band Width , 2008, 0809.4405.

[34]  T. Spencer,et al.  Anderson Localization for a Supersymmetric Sigma Model , 2009, 0910.3325.

[35]  I. Rodnianski,et al.  Classical and quantum scattering for a class of long range random potentials , 2003 .

[36]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[37]  Quantum Diffusion of the Random Schrödinger Evolution in the Scaling Limit II. The Recollision Diagrams , 2005, math-ph/0512015.

[38]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[39]  W. Kirsch,et al.  Anderson model with decaying randomness: mobility edge , 2000 .

[40]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[41]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[42]  Herbert Spohn,et al.  Derivation of the transport equation for electrons moving through random impurities , 1977 .

[43]  David Hasler,et al.  Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs , 2006 .

[44]  Absolutely Continuous Spectra of Quantum Tree Graphs with Weak Disorder , 2005, math-ph/0504039.

[45]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.