Efficient Pseudorandom Correlation Generators: Silent OT Extension and More

Secure multiparty computation (MPC) often relies on correlated randomness for better efficiency and simplicity. This is particularly useful for MPC with no honest majority, where input-independent correlated randomness enables a lightweight “non-cryptographic” online phase once the inputs are known. However, since the amount of randomness typically scales with the circuit size of the function being computed, securely generating correlated randomness forms an efficiency bottleneck, involving a large amount of communication and storage.

[1]  Moni Naor,et al.  Efficient oblivious transfer protocols , 2001, SODA '01.

[2]  Victor Y. Pan,et al.  Fast Feasible and Unfeasible Matrix Multiplication , 2018, ArXiv.

[3]  Matthew K. Franklin,et al.  Joint Encryption and Message-Efficient Secure Computation , 1993, CRYPTO.

[4]  Yuval Ishai,et al.  Founding Cryptography on Oblivious Transfer - Efficiently , 2008, CRYPTO.

[5]  Daniel Wichs,et al.  On the Communication Complexity of Secure Function Evaluation with Long Output , 2015, IACR Cryptol. ePrint Arch..

[6]  Rafail Ostrovsky,et al.  Minimum Resource Zero-Knowledge Proofs (Extended Abstract) , 1989, CRYPTO.

[7]  Yuval Ishai,et al.  Semantic Security under Related-Key Attacks and Applications , 2011, ICS.

[8]  Yuval Ishai,et al.  Homomorphic Secret Sharing: Optimizations and Applications , 2017, CCS.

[9]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[10]  J. Bordewijk Inter-reciprocity applied to electrical networks , 1957 .

[11]  Yuval Ishai,et al.  Function Secret Sharing , 2015, EUROCRYPT.

[12]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[13]  Jacques Patarin,et al.  QUAD: A Practical Stream Cipher with Provable Security , 2006, EUROCRYPT.

[14]  Ivan Damgård,et al.  Semi-Homomorphic Encryption and Multiparty Computation , 2011, IACR Cryptol. ePrint Arch..

[15]  Ralf Fröberg,et al.  An inequality for Hilbert series of graded algebras. , 1985 .

[16]  Claudio Orlandi,et al.  A New Approach to Practical Active-Secure Two-Party Computation , 2012, IACR Cryptol. ePrint Arch..

[17]  Craig Gentry,et al.  (Leveled) fully homomorphic encryption without bootstrapping , 2012, ITCS '12.

[18]  Ron Rothblum,et al.  Spooky Encryption and Its Applications , 2016, CRYPTO.

[19]  Ivan Damgård,et al.  Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..

[20]  R. Cramer,et al.  Multiparty Computation from Threshold Homomorphic Encryption , 2000 .

[21]  Magali Bardet,et al.  Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .

[22]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[23]  Patrick C. Fischer Further Schemes for Combining Matrix Algorithms , 1974, ICALP.

[24]  Yuval Ishai,et al.  Secure Multiparty Computation with General Interaction Patterns , 2016, IACR Cryptol. ePrint Arch..

[25]  Geoffroy Couteau A Note on the Communication Complexity of Multiparty Computation in the Correlated Randomness Model , 2018, IACR Cryptol. ePrint Arch..

[26]  Vladimir Kolesnikov,et al.  Efficient Batched Oblivious PRF with Applications to Private Set Intersection , 2016, CCS.

[27]  Christopher Wolf,et al.  Multivariate quadratic polynomials in public key cryptography , 2005, IACR Cryptol. ePrint Arch..

[28]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[29]  Benny Pinkas,et al.  Keyword Search and Oblivious Pseudorandom Functions , 2005, TCC.

[30]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[31]  Sanjeev Arora,et al.  New Algorithms for Learning in Presence of Errors , 2011, ICALP.

[32]  Rafail Ostrovsky,et al.  Cryptography with One-Way Communication , 2014, CRYPTO.

[33]  Richard J. Lipton,et al.  Cryptographic Primitives Based on Hard Learning Problems , 1993, CRYPTO.

[34]  Tomoharu Shibuya,et al.  Generalization of Lu's linear time encoding algorithm for LDPC codes , 2012, 2012 International Symposium on Information Theory and its Applications.

[35]  Tobias Nilges,et al.  Maliciously Secure Oblivious Linear Function Evaluation with Constant Overhead , 2017, ASIACRYPT.

[36]  Eugene Prange,et al.  The use of information sets in decoding cyclic codes , 1962, IRE Trans. Inf. Theory.

[37]  Marcel Keller,et al.  Faster Secure Multi-party Computation of AES and DES Using Lookup Tables , 2017, ACNS.

[38]  Ivan Damgård,et al.  The TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling Revisited , 2017, CRYPTO.

[39]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[40]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[41]  Anat Paskin-Cherniavsky,et al.  On the Power of Correlated Randomness in Secure Computation , 2013, TCC.

[42]  Yuval Ishai,et al.  Compressing Vector OLE , 2018, CCS.

[43]  Brent Waters,et al.  A Framework for Efficient and Composable Oblivious Transfer , 2008, CRYPTO.

[44]  Yuval Ishai,et al.  Group-Based Secure Computation: Optimizing Rounds, Communication, and Computation , 2017, EUROCRYPT.

[45]  Tancrède Lepoint,et al.  NFLlib: NTT-Based Fast Lattice Library , 2016, CT-RSA.

[46]  Mohammad Reza Aref,et al.  Squaring attacks on McEliece public-key cryptosystems using quasi-cyclic codes of even dimension , 2016, Des. Codes Cryptogr..

[47]  Nico Döttling,et al.  TinyOLE: Efficient Actively Secure Two-Party Computation from Oblivious Linear Function Evaluation , 2017, IACR Cryptol. ePrint Arch..

[48]  B. Salvy,et al.  Asymptotic Behaviour of the Index of Regularity of Quadratic Semi-Regular Polynomial Systems , 2022 .

[49]  Yuval Ishai,et al.  Function Secret Sharing: Improvements and Extensions , 2016, CCS.

[50]  Jonathan Katz,et al.  Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers , 2020, 2020 IEEE Symposium on Security and Privacy (SP).

[51]  Christof Paar,et al.  Lapin: An Efficient Authentication Protocol Based on Ring-LPN , 2012, FSE.

[52]  Yuval Ishai,et al.  Distributed Point Functions and Their Applications , 2014, EUROCRYPT.

[53]  Ahmad-Reza Sadeghi,et al.  Pushing the Communication Barrier in Secure Computation using Lookup Tables , 2017, NDSS.

[54]  Yuval Ishai,et al.  Linear-time encodable codes meeting the gilbert-varshamov bound and their cryptographic applications , 2014, ITCS.

[55]  Yuval Ishai,et al.  Compressing Cryptographic Resources , 1999, CRYPTO.

[56]  Paulo S. L. M. Barreto,et al.  MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes , 2013, 2013 IEEE International Symposium on Information Theory.

[57]  Jonathan Katz,et al.  Optimizing Authenticated Garbling for Faster Secure Two-Party Computation , 2018, IACR Cryptol. ePrint Arch..

[58]  Donald Beaver,et al.  Efficient Multiparty Protocols Using Circuit Randomization , 1991, CRYPTO.

[59]  Yuval Ishai,et al.  Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation , 2005, TCC.

[60]  Moni Naor,et al.  Oblivious Polynomial Evaluation , 2006, SIAM J. Comput..

[61]  Frederik Vercauteren,et al.  Fully homomorphic SIMD operations , 2012, Designs, Codes and Cryptography.

[62]  Gregory V. Bard,et al.  Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers , 2007, IACR Cryptol. ePrint Arch..

[63]  Sanjeev Arora,et al.  Learning Parities with Structured Noise , 2010, Electron. Colloquium Comput. Complex..

[64]  Yehuda Lindell,et al.  More efficient oblivious transfer and extensions for faster secure computation , 2013, CCS.

[65]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[66]  Rafail Ostrovsky,et al.  Zero-knowledge from secure multiparty computation , 2007, STOC '07.

[67]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[68]  Yuval Ishai,et al.  Low-Complexity Cryptographic Hash Functions , 2017, ITCS.

[69]  Luca Trevisan,et al.  On e-Biased Generators in NC0 , 2003, FOCS.

[70]  Yuval Ishai,et al.  Foundations of Homomorphic Secret Sharing , 2018, ITCS.

[71]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[72]  Abhi Shelat,et al.  Scaling ORAM for Secure Computation , 2017, IACR Cryptol. ePrint Arch..

[73]  Marcel Keller,et al.  Overdrive: Making SPDZ Great Again , 2018, IACR Cryptol. ePrint Arch..

[74]  Feng-Hao Liu,et al.  Secure PRNGs from Specialized Polynomial Maps over Any , 2008, PQCrypto.

[75]  Joe Kilian,et al.  Founding crytpography on oblivious transfer , 1988, STOC '88.

[76]  Vladimir Kolesnikov,et al.  Improved OT Extension for Transferring Short Secrets , 2013, CRYPTO.

[77]  David Mandell Freeman,et al.  Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups , 2010, EUROCRYPT.

[78]  Shai Halevi,et al.  Faster Homomorphic Linear Transformations in HElib , 2018, IACR Cryptol. ePrint Arch..

[79]  François Le Gall,et al.  Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[80]  Yuval Ishai,et al.  Secure Arithmetic Computation with Constant Computational Overhead , 2017, CRYPTO.

[81]  Peter Scholl,et al.  Extending Oblivious Transfer with Low Communication via Key-Homomorphic PRFs , 2018, Public Key Cryptography.

[82]  Shai Halevi,et al.  Algorithms in HElib , 2014, CRYPTO.

[83]  Yuval Ishai,et al.  Breaking the Circuit Size Barrier for Secure Computation Under DDH , 2016, CRYPTO.

[84]  Daniel Augot,et al.  A Fast Provably Secure Cryptographic Hash Function , 2003, IACR Cryptol. ePrint Arch..

[85]  Nigel P. Smart,et al.  Which Ring Based Somewhat Homomorphic Encryption Scheme is Best? , 2015, CT-RSA.

[86]  Emmanuela Orsini,et al.  TinyKeys: A New Approach to Efficient Multi-Party Computation , 2018, IACR Cryptol. ePrint Arch..

[87]  Chi-Jen Lu,et al.  Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility , 2007, EUROCRYPT.

[88]  Rudolf Ahlswede,et al.  Founding Cryptography on Oblivious Transfer , 2016 .

[89]  Abhi Shelat,et al.  Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One , 2006, CRYPTO.

[90]  Oded Goldreich,et al.  Candidate One-Way Functions Based on Expander Graphs , 2011, Studies in Complexity and Cryptography.

[91]  Jonathan Katz,et al.  Authenticated Garbling and Efficient Maliciously Secure Multi-Party Computation , 2017, IACR Cryptol. ePrint Arch..

[92]  Donald Beaver,et al.  Correlated pseudorandomness and the complexity of private computations , 1996, STOC '96.

[93]  Elette Boyle,et al.  Homomorphic Secret Sharing from Lattices Without FHE , 2019, IACR Cryptol. ePrint Arch..

[94]  Yuval Ishai,et al.  Secure Arithmetic Computation with No Honest Majority , 2008, IACR Cryptol. ePrint Arch..

[95]  T. Richardson,et al.  Linear Time Encoding of LDPC Codes , 1999 .

[96]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[97]  Peter Rindal,et al.  PIR-PSI: Scaling Private Contact Discovery , 2018, IACR Cryptol. ePrint Arch..

[98]  Itai Dinur,et al.  An Optimal Distributed Discrete Log Protocol with Applications to Homomorphic Secret Sharing , 2019, Journal of Cryptology.

[99]  Nicolas Sendrier,et al.  Analysis of Information Set Decoding for a Sub-linear Error Weight , 2016, PQCrypto.

[100]  Yuval Ishai,et al.  Cryptography with Constant Input Locality , 2007, Journal of Cryptology.

[101]  Rafail Ostrovsky,et al.  Cryptography with constant computational overhead , 2008, STOC.

[102]  Bo-Yin Yang,et al.  Multivariates Polynomials for Hashing , 2007, Inscrypt.

[103]  Hideki Imai,et al.  Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.

[104]  Olivier Blazy,et al.  Efficient Encryption From Random Quasi-Cyclic Codes , 2016, IEEE Transactions on Information Theory.

[105]  Michael Alekhnovich More on Average Case vs Approximation Complexity , 2011, computational complexity.

[106]  V. Strassen Gaussian elimination is not optimal , 1969 .

[107]  Pierrick Méaux,et al.  On the Concrete Security of Goldreich's Pseudorandom Generator , 2018, ASIACRYPT.

[108]  Yuval Ishai,et al.  Extending Oblivious Transfers Efficiently , 2003, CRYPTO.

[109]  Chen-Mou Cheng,et al.  Multiplying boolean Polynomials with Frobenius Partitions in Additive Fast Fourier Transform , 2018, ArXiv.

[110]  Igor E. Kaporin,et al.  The aggregation and cancellation techniques as a practical tool for faster matrix multiplication , 2004, Theor. Comput. Sci..

[111]  Rafail Ostrovsky,et al.  Reusable Non-Interactive Secure Computation , 2019, IACR Cryptol. ePrint Arch..

[112]  Jonathan Katz,et al.  Global-Scale Secure Multiparty Computation , 2017, CCS.

[113]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.